基于同步辐射的强冲击荷载下原位诊断技术及其应用研究进展

陈森 侯琪玥 王倩男 李江涛 吕超 张兵兵 谢红兰 李可 汪俊 胡建波

杜明燃, 陈宇航, 陆少锋, 梁进, 李基锐, 王尹军, 王天照, 陈智凡. 基于正交试验法的气泡帷幕削波特性研究[J]. 高压物理学报, 2023, 37(6): 065302. doi: 10.11858/gywlxb.20230684
引用本文: 陈森, 侯琪玥, 王倩男, 李江涛, 吕超, 张兵兵, 谢红兰, 李可, 汪俊, 胡建波. 基于同步辐射的强冲击荷载下原位诊断技术及其应用研究进展[J]. 高压物理学报, 2023, 37(5): 050104. doi: 10.11858/gywlxb.20230747
DU Mingran, CHEN Yuhang, LU Shaofeng, LIANG Jin, LI Jirui, WANG Yinjun, WANG Tianzhao, CHEN Zhifan. Bubble Curtain Clipping Characteristics Based on Orthogonal Test Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065302. doi: 10.11858/gywlxb.20230684
Citation: CHEN Sen, HOU Qiyue, WANG Qiannan, LI Jiangtao, LYU Chao, ZHANG Bingbing, XIE Honglan, LI Ke, WANG Jun, HU Jianbo. Progress on Synchrotron Based in-Situ Dynamic X-Ray Diagnostics and Its Applications[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050104. doi: 10.11858/gywlxb.20230747

基于同步辐射的强冲击荷载下原位诊断技术及其应用研究进展

doi: 10.11858/gywlxb.20230747
基金项目: 国家自然科学基金(12072331,12102410);冲击波物理与爆轰物理重点实验室基金(2021JCJQLB05705)
详细信息
    作者简介:

    陈 森(1993-),男,博士,副研究员,主要从事同步辐射原位动态诊断技术与材料多尺度动态行为研究. E-mail:senchen02@163.com

  • 中图分类号: O521.3; O521.2

Progress on Synchrotron Based in-Situ Dynamic X-Ray Diagnostics and Its Applications

  • 摘要: 强冲击荷载下材料的微介观动态行为是动态压缩科学中的重要研究内容,但长期以来由于缺乏原位动态跨尺度表征技术而进展缓慢。以同步辐射为典型代表的先进X射线光源的出现为该问题的解决提供了革命性的机遇与挑战。依托同步辐射光源,近年来对强冲击荷载下材料的动态变形、损伤失效、固-固相变、熔化等问题研究取得了重要突破。聚焦基于同步辐射的强冲击荷载下原位诊断技术及其应用研究进展,简要介绍了同步辐射光源的特性、同步辐射光源与动态加载装置的结合、相关仿真计算方法的发展以及典型科学问题的应用。

     

  • 港口码头、水利水电设施和航道疏浚等基础建设工程在我国的发展规划中占据重要地位,然而,其作业环境复杂,难以通过机械拆除手段实现工程目标。水下爆破技术具有适用范围广、价格低廉等优势,能够很好地适应复杂环境,被广泛地应用于工程建设[13]。水下爆炸与其他介质中的爆炸不同,所产生的冲击波具有峰值压力更高、影响范围更广、毁伤效应更强的特点[45]。水下爆破作业过程的主要危害因素有水中冲击波、水面涌浪、爆破飞石等[6]。其中,水中冲击波具有毁伤作用强、作用时间长的特点[7],如何减小水中冲击波的危害是目前水下爆破领域亟待解决的重要问题之一[89]

    气泡帷幕的概念最早由加拿大工程师Adolph提出,用于Oratario水电站的水下爆破,由于其对水中冲击波的削减效果优异,因而得到广泛认可和应用[10]。为进一步研究气泡帷幕的削波作用,国内学者也开展了相关研究。刘欣等[11]通过改变气泡帷幕与被保护对象之间的距离,研究了气泡帷幕对水中冲击波衰减效果的影响,发现气泡帷幕与被保护物的间距越小,水中冲击波的削减效果越明显。胡伟才等[12]利用LS-DYNA软件,分析了气泡帷幕的数量、间距和防护距离对桥梁振动速度削减作用的影响,发现气泡帷幕数量的影响最大,气泡帷幕间距次之,气泡帷幕防护距离的影响最小。李泽华等[13]研究了气泡与水中冲击波的相互作用过程,发现气泡的强力压缩和破碎是削减水中冲击波的最佳方式。谢达建等[14]利用LS-DYNA软件建立了水下钻孔爆破模型,结合长江九朝段炸礁工程,分析了气泡帷幕的距离对削波效果的影响,发现在距离被保护对象较近处设置气泡帷幕时的防护效果更好。陆少锋等[15]研究了不同供风量形成的气泡帷幕对水中冲击波的削减效应,发现气泡帷幕的削波效果随着供风量的增加而增强。

    综上所述,气泡帷幕的削波效果与众多因素有关,而气泡帷幕层数、气泡帷幕爆心距和药包深度作为工程实践中的重要因素,对气泡帷幕削波效果的影响以及影响程度尚待深入研究。为此,本研究利用AUTODYN软件建立水下爆炸模型,设计现场试验对模型进行验证,通过3因素3水平正交试验,对气泡帷幕层数、气泡帷幕爆心距和药包深度对削波效果的影响进行敏感性分析,以期获得削波效果最优的组合方案,为气泡帷幕在水下爆炸中的应用提供参考和理论依据。

    1.1.1   炸药材料模型

    炸药采用JWL状态方程[16]描述,其表达式为

    p=A(1ωR1V)eR1V+B(1ωR2V)eR2V+EV
    (1)

    式中:p为冲击波压力,A、B、R1、R2ω为JWL状态方程参数,E为炸药内能,V为当前的相对体积。工程中常用2号岩石乳化炸药,具体参数见表1,其中:ρ为密度,D为爆速,pC-J为C-J爆轰压力。

    表  1  炸药的材料参数
    Table  1.  Material parameters of explosive
    ρ/(g·cm−3)D/(km·s−1)pC-J/GPaA/GPaB/GPaR1R2ωE/(kJ·g−1)
    1.304.59.80214.40.1824.150.950.154.19
    下载: 导出CSV 
    | 显示表格
    1.1.2   水材料模型

    水采用多项式状态方程[16]描述。当水被压缩时(压缩比μ>0),其状态方程为

    pw=A1μ+A2μ+A3μ+(B0+B1μ)ρ0e
    (2)

    当水膨胀时(μ<0),其状态方程为

    pw=T1μ+T2μ+B0ρ0e
    (3)

    当水既不压缩也不膨胀时(μ=0),其状态方程可简化为

    pw=B0ρ0e
    (4)

    式中:pw为水的压力;压缩比μ=ρ/ρ0−1,ρ为水的当前密度,ρ0为水的初始密度;A1A2A3B0B1T1T2均为常数,如表2所示;e为水的比内能,e=(p0 +ρ0gH)/B0ρ0,其中p0为大气压,g为重力加速度,H为水深(即药包深度)。根据药包深度调节水的比内能e,当H=4.5 m时,水的比内能为519.38 J/kg。

    表  2  水的材料参数
    Table  2.  Material parameters of water
    ρ/(g·cm−3)A1/GPaA2/GPaA3/GPaB0B1T1/GPaT2/GPaω
    1.0002.29.5414.570.280.282.200.150
    下载: 导出CSV 
    | 显示表格
    1.1.3   气泡帷幕材料模型

    由刘欣等[11]和谢达建等[14]的研究可知,数值模拟中可以利用空气层近似替代气泡帷幕。选用AUTODYN材料库中的AIR空气模型和理想气体状态方程[17],其表达式为

    p=(γ1)ρaρa0Ea
    (5)

    式中:Ea为空气的比内能;γ为绝热指数,取1.4;ρaρa0分别为空气的当前密度和初始密度,ρa0取1.225 kg/m3

    药包在无限水域中爆炸时,球形药包在平面内关于x轴和y轴对称,为了减少运算量,利用AUTODYN建立如图1所示的1/4轴对称计算模型,模型尺寸为20 m×20 m。炸药和水均采用欧拉网格划分,网格大小设为10 mm。炸药选用300 g的2号岩石乳化炸药,起爆点设在药包球心,选用Transmit边界条件,采用mm-mg-ms单位制[1819]。通过调节空气层的厚度实现不同气泡帷幕层数的模拟:气泡帷幕层数为1(N=1)时,空气层厚度为10 cm,气泡帷幕层数为2(N=2)时,空气层厚度为20 cm,依此类推。

    图  1  数值计算模型示意图
    Figure  1.  Schematic diagram of the numerical simulation model

    为验证数值模拟的合理性,在某河道进行了气泡帷幕水下爆炸冲击波测试。试验设置3种工况:工况1为1层气泡帷幕,工况2为2层气泡帷幕,工况3为3层气泡帷幕。每种工况测试2次,共计6次试验。试验区域的水深为9~10 m,平均水流速度为0.1 m/s。传感器和药包均设置在4.5 m水深处,且位于同一水平线上。传感器选用PCB-138A01型压力传感器。冲击波测试仪为4通道Blast-PRO型测试仪,测试过程中,触发电平设置为0.2%,量程设置为10 V,记录时长为0.4 s。炸药选用300 g 2号岩石乳化炸药。气泡帷幕设置在距药包中心6 m处。选取C1C2两个测点,其中,测点C1位于药包左侧12 m处,测点C2位于药包右侧12 m处。试验布局如图2所示。现场试验与数值模拟结果列于表3,其中pmax为冲击波峰值压力,δ为冲击波峰值压力削减率。以1层气泡帷幕为例,测点C1C2的压力时程曲线如图3所示。

    图  2  气泡帷幕试验布局
    Figure  2.  Layout of the bubble curtain test
    表  3  不同气泡帷幕层数下水下爆炸冲击波峰值压力
    Table  3.  Peak pressure of underwater blast shock wave for different bubble curtain layers
    Test No. N On-site test Simulation
    pmax/MPa δ/% pmax/MPa δ/%
    C1 C2 C1 C2
    1 1 1.883 0.154 91.82 1.750 0.291 83.37
    2 1 1.789 0.228 87.26 1.750 0.291 83.37
    3 2 1.675 0.157 90.63 1.750 0.116 93.37
    4 2 1.486 0.108 92.73 1.750 0.116 93.37
    5 3 1.862 0.247 86.73 1.750 0.248 85.83
    6 3 1.764 0.196 88.89 1.750 0.248 85.83
    下载: 导出CSV 
    | 显示表格
    图  3  设置1层气泡帷幕时测点C1C2处的压力时程曲线
    Figure  3.  Shock wave pressure-time curves at measurement points C1 and C2 for one layer of bubble curtain

    表3可以看出:设置1层气泡帷幕时,2次现场试验测得C1处的峰值压力分别为1.883和1.789 MPa,C2处的峰值压力分别为0.154和0.228 MPa,削减率分别为91.82%和87.26%;数值模拟得到C1C2处的峰值压力分别为1.750和0.291 MPa,削减率为83.37%。以峰值压力的削减率为误差评判指标,数值模拟与试验结果的相对误差分别为9.20%和4.46%。

    设置2层气泡帷幕时,现场试验得到的削减率为90.63%和92.73%,数值模拟得到削减率为93.37%,相对误差为3.02%和0.69%。设置3层气泡帷幕时,现场试验得到的削减率为86.73%和88.89%,数值模拟得到的削减率为85.83%,相对误差为1.04%和3.44%。

    由上述分析可知,采用空气层替代本试验工况中的气泡帷幕时,误差较小,说明本数值模型可以很好地模拟实际工况,因此后续正交试验均采用该方法进行模拟运算。

    为减少试验次数,同时保证试验的可靠性,选用L9(34)正交表,利用AUTODYN软件设计了3因素3水平正交试验方案。选取气泡帷幕层数(N)、气泡帷幕爆心距(D)、药包深度(H)3个因素,分别设为因素A、B、C,其中:气泡帷幕层数分为3种水平,即N取1、2、3;气泡帷幕爆心距有3种水平,分别取1、3、5 m;药包深度有3种水平,分别为2.5、6.5、10.5 m。各因素之间无交互作用。此外,设置未加气泡帷幕的空白对照组。如图1所示,距药包中心6、9和12 m分别设置测点1、测点2和测点3,取冲击波峰值压力削减率δ作为评价指标,正交试验设计因素和因素水平见表4,正交试验方案见表5

    表  4  正交试验设计因素和水平
    Table  4.  Orthogonal test design factors and levels
    LevelFactor
    ND/mH/m
    1112.5
    2236.5
    33510.5
    下载: 导出CSV 
    | 显示表格
    表  5  正交试验方案
    Table  5.  Orthogonal test protocols
    No. Level Test programme No. Level Test programme
    N D H N D H
    1 1 1 1 A1B1C1 6 2 3 1 A2B3C1
    2 1 2 2 A1B2C2 7 3 1 3 A3B1C3
    3 1 3 3 A1B3C3 8 3 2 1 A3B2C1
    4 2 1 2 A2B1C2 9 3 3 2 A3B3C2
    5 2 2 3 A2B2C3
    下载: 导出CSV 
    | 显示表格

    利用水的多项式状态方程,可以计算出药包深度为2.5、6.5和10.5 m时,水的比内能分别为449.38、589.38和729.38 J/kg。由此通过修改AUTODYN材料库中水介质的比内能[2022]模拟炸药的不同水深环境。在空白对照组中,水下爆炸冲击波峰值压力(pmax)及其到达时间(tp)如表6所示,压力时程曲线如图4所示。

    表  6  空白对照组数据
    Table  6.  Data of blank control group
    No. H/m Point pmax/MPa tp/ms No. H/m Point pmax/MPa tp/ms
    1 2.5 1 4.108 3.952 3 10.5 1 4.187 3.954
    2 2.456 6.001 2 2.533 6.001
    3 1.531 8.006 3 1.708 8.002
    2 6.5 1 4.148 3.954
    2 2.494 6.002
    3 1.688 8.016
    下载: 导出CSV 
    | 显示表格
    图  4  无气泡帷幕时冲击波压力时程曲线
    Figure  4.  Time course curves of shock wave pressure without bubble curtain

    表6图4可以看出:冲击波压力时程曲线的波形一致;在浅水区域,随着水下爆炸药包深度的增加,冲击波到达测点的时间基本保持不变,而冲击波峰值压力增大。以测点1为例,当药包深度为2.5、6.5和10.5 m时,冲击波到达峰值压力的时间分别为3.952、3.954和3.954 ms,峰值压力分别为4.108、4.148和4.187 MPa。

    按照表5设计正交试验,将所得数据绘制压力时程曲线,如图5所示。可以看出,气泡帷幕层数、气泡帷幕爆心距和药包深度对气泡帷幕的削波效果均有影响。以正交试验1为例:对于空白对照试验1(未设置气泡帷幕,H=2.5 m),测点1、测点2和测点3的冲击波峰值压力分别为4.108、2.456和1.531 MPa;对于正交试验1(N=1,D=1 m,H=2.5 m),测点1、测点2和测点3的冲击波峰值压力分别为0.431、0.314和0.233 MPa,削减率分别为89.51%、87.21%和84.78%,平均削减率为87.17%。同理,求得其余8个试验的冲击波峰值压力削减率,如表7所示。

    图  5  有气泡帷幕时的冲击波压力时程曲线
    Figure  5.  Time course curves of shock wave pressure with bubble curtain
    表  7  正交试验数据
    Table  7.  Orthogonal test data
    Test No.ProgrammeND/mH/mpmax/MPaδ/%
    Point 1Point 2Point 3
    1A1B1C1112.50.3410.3140.29586.55
    2A1B2C2136.50.3200.2780.26188.56
    3A1B3C31510.50.3550.2860.26488.26
    4A2B1C2216.50.1220.1130.10695.42
    5A2B2C32310.50.1320.1180.10795.31
    6A2B3C1252.50.1460.1210.10994.80
    7A3B1C33110.50.2750.2600.25089.51
    8A3B2C1332.50.3720.3320.30885.77
    9A3B3C2356.50.4120.3050.27487.20
    下载: 导出CSV 
    | 显示表格

    表7所示,气泡帷幕防护技术能够很好地削弱水下爆炸冲击波的峰值压力,削减率可达95.42%;在所设置的9组正交试验中,正交试验4(N=2,D=1 m,H=6.5 m)的削减率最大,防护效果最好。设置1、2、3层气泡帷幕时,平均削减率分别为86.55%~88.56%、94.80%~95.42%、85.77%~89.51%。由此可见,气泡帷幕的冲击波峰值压力削减率存在最大值,到达最佳防护效果之后,继续增加气泡帷幕数量反而出现负效应。

    另外,以正交试验1、2、3为例,测点1处,D为1、3、5 m时,冲击波到达峰值压力的时间分别为3.507、2.058、0.652 ms,说明气泡帷幕爆心距越小,水下爆炸冲击波到达峰值压力的时间越长。

    Ki表示因素j取第i个水平时的评价指标之和,ki表示因素j取第i个水平时评价指标的平均值。通过极差Rj分析各个因素对评价指标的影响程度,Rj越大,则表明因素j对评价指标的影响越明显[2325]

    设评价指标为冲击波峰值压力的平均削减率δave,根据表7中的正交试验数据,得到极差分析结果,如表8所示,水平与指标的关系如图6所示。

    表  8  极差分析结果
    Table  8.  Results of the variance analysis
    FactorK1K2K3k1k2k3R
    N263.37285.53262.4887.7995.1887.497.68
    D271.48269.64270.2690.4989.8890.090.61
    H267.12271.18273.0889.0490.3991.031.99
    下载: 导出CSV 
    | 显示表格
    图  6  水平与指标的关系
    Figure  6.  Relationship between level and indicators

    表8图6可知,气泡帷幕层数、气泡帷幕爆心距和药包深度的极差分别为7.68、0.61、1.99,说明气泡帷幕层数对气泡帷幕削波效应的影响最大,药包深度次之,气泡帷幕爆心距的影响最小。图6(a)显示,削减率随气泡帷幕层数的增加先增大后减小,进一步验证了当气泡帷幕削波效果达到最大后继续增加气泡帷幕层数反而会降低削波效果的结论。另外,气泡帷幕爆心距越小,药包深度越大,则气泡帷幕削波效果越好。根据表8可以推断,当气泡帷幕层数为2,气泡帷幕爆心距为1 m,药包深度为10.5 m时,削波效果最好。

    在方差分析中,取显著性水平P为0.05,查表得F0.05为19。通过计算因素j的离差平方和Sj、自由度μj和均方ˉSj,得到因素jFj值,与显著性水平F0.05进行对照,若Fj>F0.05,则说明因素j对气泡帷幕削波效果的影响显著;反之,则影响不显著。因素j的均方¯Sj越大,其对气泡帷幕削波效果的影响越大。

    Sj=1nni=1K2ij1h(hi=1yi)2
    (6)
    S=hi=1y2i1h(hi=1yi)2
    (7)
    Se=S3j=1Sj
    (8)

    式中:Kij为第j个因素下第i个水平所对应的试验指标;yi为第i次试验的试验指标;n为水平数,n=3;h为正交试验次数,h=9;S为总离差平方和;Se为误差平方和。

    fe=ft3j=1fj
    (9)

    式中:fe为误差项自由度;ft为总自由度,ft=h−1;fj=n−1。

    ˉSj=Sjfj
    (10)
    ˉSe=Sefe
    (11)
    Fj=ˉSjˉSe
    (12)

    式中:ˉSe为误差项的均方。F统计量服从第一自由度为fj、第二自由度为feF分布,显著性水平取0.05时,对F统计量进行检验。

    利用式(9)~式(17)计算离差平方和S、自由度f、均方ˉSF[2628],所得结果见表9

    表  9  方差分析结果
    Table  9.  Results of variance analysis
    Sources of varianceSfˉSFSignificance-effect
    N113.68256.8438.81Yes
    D3.4821.741.19No
    H6.1823.092.11No
    Error2.9321.46
    Sum126.278
    下载: 导出CSV 
    | 显示表格

    根据表9中的ˉS可以看出,正交试验所选因素对气泡帷幕削波效果的影响由大到小依次为气泡帷幕层数、药包深度、气泡帷幕爆心距。通过方差分析可以看出:气泡帷幕层数的显著性水平F为38.81,大于F0.05,表明气泡帷幕层数对削波效果有显著影响;药包深度和气泡帷幕爆心距的显著性水平分别为1.19和2.11,均小于F0.05,表明二者对气泡帷幕削波效果的影响不大,与极差分析所得结论一致。

    基于正交试验极差分析,利用AUTODYN显式有限元分析程序,建立了自由水域内药包爆炸的1/4轴对称计算模型,探究了气泡帷幕层数、气泡帷幕爆心距和药包深度对气泡帷幕削波效应的影响和敏感性,得出以下主要结论。

    (1) 气泡帷幕可以有效地削减水中冲击波峰值压力,削减率可达95.42%,从而有效降低水中冲击波对爆破区域附近被保护对象的毁伤作用。

    (2) 气泡帷幕的削波效果与气泡帷幕层数、气泡帷幕爆心距和药包深度均有关。气泡帷幕爆心距越小,药包深度越大,则气泡帷幕的削波效果越好;而气泡帷幕层数与气泡帷幕削波效果并不成正比,当气泡帷幕层数为1、2、3时,冲击波峰值压力的平均削减率分别为87.79%、95.17%和87.49%,在实际工程中应合理选择气泡帷幕层数。

    (3) 正交试验分析显示:气泡帷幕层数对气泡帷幕削波效应的影响最大,药包深度次之,气泡帷幕爆心距的影响最小;当气泡帷幕层数为2,气泡帷幕爆心距为1 m,药包深度为10.5 m时,削波效果最好。

  • 图  (a) 同步辐射装置的典型结构示意图(包含储存环、电子枪、射频腔、光源器件及其相应的束线实验站)[2],(b)高能(β1,红色)和低能(β1,蓝色)电子束团绕圆周运动时的典型辐射场[5]

    Figure  1.  (a) Generic scheme of a synchrotron radiation facility with its accelerator (storage ring), the electron injector, a radiofrequency cavity, and X-ray source devices of different types with their beamlines[2]; (b) radiation pattern of charged particles moving in a circular path: high-energy (β1, red) and low-energy (β1, blue)

    图  ESRF中适用于动态单发实验的典型束团填充模式(红色束团适用于动态单发实验)

    Figure  2.  Typical filling patterns of bunches generally used in dynamic single-shot experiments with ESRF(Bunches in red color are suitable for dynamic single-shot experiments.)

    图  不同光源器件的X射线能谱(能谱均使用SPECTRA程序计算)[1415]

    Figure  3.  Integrated X-ray spectra for different sources (All spectra are calculated using SPECTRA)[1415]

    图  波荡器光源产生的X射线能谱特性(使用SPECTRA计算)[1415]

    Figure  4.  Characteristics of X-ray spectra for undulator sources (All patterns are calculated using SPECTRA)[1415]

    图  动态实验中使用的X射线光学器件[16, 20, 2829]

    Figure  5.  X-ray optics generally used in time-resolved dynamic experiments[16, 20, 2829]

    图  典型的动态加载装置与同步辐射结合[3, 31, 3435]

    Figure  6.  Typical dynamic loading capabilities implemented in synchrotrons[3, 31, 3435]

    图  基于同步辐射的动态物质科学研究平台[30, 38]

    Figure  7.  Synchrotron based research platforms for dynamic compression sciences[30, 38]

    图  欧洲XFEL团队提出的基于XFEL和同步辐射的动态实验全流程模拟流程[45]

    Figure  8.  Start-to-end simulation workflow for dynamic experiments for XFELs and synchrotrons proposed by team of European XFEL[45]

    图  X射线衍射和散射信号模拟实例:(a) SLADS计算的各向异性密实纳米颗粒系统的SAXS谱[44],(b) GAPD计算的基于真实同步辐射粉光能谱的多晶衍射信号[58],(c) 利用LauePt4模拟的单晶劳厄衍射信号[57],(d) 利用LAMMPS内嵌模块计算的bcc铁在冲击过程中的衍射信号[62]

    Figure  9.  Examples of X-ray diffraction and scattering pattern simulations: (a) SAXS pattern for a large, anisotropic dense particle system calculated using SLADS[44]; (b) diffraction pattern for a polycrystalline system with pink synchrotron beam calculated using GAPD[58]; (c) Laue pattern simulation and indexing using LauePt4[57]; (d) diffraction patterns of bcc-Fe during impact calculated using packages implemented in LAMMPS[62]

    图  10  基于BSRF开展的霍普金森杆加载下单晶镁的原位X射线衍射测量[35]:(a)原位静态劳厄衍射图,(b) 原位动态劳厄衍射图, (c) 沿<0001>拉伸时拓展孪晶示意图,(d) 拓展孪晶与母体的取向关系,(e) 分子动力学模拟结果

    Figure  10.  In-situ X-ray diffraction measurements under split Hopkinson bar loading based on BSRF[35]: (a) static Laue diffraction pattern; (b) dynamic Laue diffraction pattern; (c) schematic of the extension twinning mechanism for tension loading along <0001>; (d) pole figure of extension twinning and parent matrix; (e) corresponding molecular dynamics simulation results

    图  11  冲击加载下金的高压层错研究[87]:(a) 原位纳秒X射线衍射实验示意图,(b) 典型结果,(c) 冲击加载下金的应力-体积关系

    Figure  11.  Investigations on stacking faults in shock-compressed gold[87]: (a) schematic diagram for in situ nanosecond X-ray diffraction measurements in shock-compressed gold; (b) representative results; (c) stress-volume states of shock-compressed gold

    图  12  气炮冲击荷载下单晶KCl的B1-B2相变机理研究[90]:(a) 实验装置示意图,(b) 加载几何,(c) 典型自由面速度曲线,(d)~(g)修正的WTM模型

    Figure  12.  Investigations on the B1-B2 phase transition of KCl under gas gun shock loading[90]: (a) experiment set up,(b) shock directions, (d) free surface velocity histories, (d)–(g) modified WTM model

    图  13  冲击应力对Ge冲击熔化影响的原位X射线衍射研究[103]:(a) 实验几何,(b)自由面速度曲线,(c)~(d)原位衍射图,(e) 不同峰值压力下液态Ge的体积分数变化曲线

    Figure  13.  In-situ X-ray diffraction investigations on the effects of peak shock stress on the shock melting of Ge[103]:(a) experimental configuration; (b) free surface velocity histories; (c)−(d) in-situ diffraction patterns;(e) Ge liquid volume fraction as a function of time for different peak stresses

    表  1  基于同步辐射装置的动态压缩科学研究平台

    Table  1.   Synchrotron based research platforms for dynamic compression sciences

    BeamlineLoading capabilitiesGeographic domainsStatusRef.
    35ID@APSGas guns (about 6 km/s), ns-laser (100 J)USRunning[3, 30]
    32ID@APSGas gun, SHPB/SHTBUSRunning[31]
    ID19@ESRFGas gun, SHPBEuropeRunning[38, 4041]
    ID24@ESRFns-laser (100 J)EuropeRunning[38, 40]
    NW14Ans-laser (16 J)JapanRunning[4]
    SDB@HEPSGas gun, laser, SHPB/SHTBChinaConstruction
    BL16U2@SSRFGas gun, SHPB/SHTBChinaRunning
    下载: 导出CSV

    表  2  同步辐射X射线光学模拟工具[15, 4655]

    Table  2.   Toolkits for simulations of sources and optics for synchrotron X-rays[15, 4655]

    Software Ref. Organization
    XOP [4647] ESRF, APS
    XRT (X-ray tracer) [48] MAX Ⅳ Laboratory, Canadian Light Source
    SHADOW [4952] ESRF
    SPECTRA [1415] RIKEN SPring-8 Center
    OASYS [53] Argonne National Laboratory, ESRF
    SRW [5455] ESRF
    下载: 导出CSV

    表  3  X射线衍射和散射信号的模拟工具[44, 5660]

    Table  3.   Softwares for simulations of X-ray diffraction and scattering[44, 5660]

    SoftwareRef.
    LAMMPS* XRD[60]
    SLADS/GAPD[44, 58]
    LauePt[5657]
    Debyer[59]
    下载: 导出CSV

    表  4  同步辐射X射线衍射和散射信号处理与分析工具[43, 6567]

    Table  4.   Softwares for data processing and analysis with synchrotron based X-ray diffraction and scattering[43, 6567]

    Software Ref.
    MAUD [65]
    GSAS/GSAS-Ⅱ [66]
    HiSPOD [43]
    mTEX [67]
    下载: 导出CSV
  • [1] MEYERS M A. Dynamic behavior of materials [M]. New York, USA: Wiley Press, 1994.
    [2] HWU Y, MARGARITONDO G. Synchrotron radiation and X-ray free-electron lasers (X-FELs) explained to all users, active and potential [J]. Journal of Synchrotron Radiation, 2021, 28: 1014–1029. doi: 10.1107/S1600577521003325
    [3] CAPATINA D, D’AMICO K, NUDELL J, et al. DCS: a high flux beamline for time resolved dynamic compression science-design highlights [C]. AIP Conference Proceedings, 2016, 1741: 030036.
    [4] TAKAGI S, ICHIYANAGI K, KYONO A, et al. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd: glass laser system [J]. Journal of Synchrotron Radiation, 2019, 27: 371–377.
    [5] BHARTI A, GOYAL N. Fundamental of synchrotron radiations [M]. London, UK: IntechOpen, 2019: 3.
    [6] MOBILIO S, BOSCHERINI F, MENEGHINI C. Synchrotron radiation: basics, methods and applications [M]. Berlin: Springer, 2015.
    [7] BIZEK H. The advanced photon source list of parameters: ANL/APS/TB-26 [R]. Argonne: Argonne National Laboratory, 1996.
    [8] HETTEL R O. Status of the APS-U project [C]//12th International Particle Accelerator Conference. Campinas, 2021.
    [9] RAIMONDI P, BENABDERRAHMANE C, BERKVENS P, et al. The extremely brilliant source storage ring of the european synchrotron radiation facility [J]. Communications Physics, 2023, 6: 82. doi: 10.1038/s42005-023-01195-z
    [10] CAMMARATA M, EYBERT L, EWALD F, et al. Chopper system for time resolved experiments with synchrotron radiation [J]. Review of Scientific Instruments, 2009, 80(1): 015101. doi: 10.1063/1.3036983
    [11] EINFELD D. EBS storage ring technical design report [R]. Grénoble, France: European Synchrotron Radiation Facility, 2018.
    [12] 陈森. 基于先进光源的超快X射线散衍射诊断方法研究 [D]. 绵阳: 中国工程物理研究院, 2020.

    CHEN S. Ultra-fast X-ray diffraction/scattering diagnostics with advanced light source [D]. Mianyang: China Academy of Engineering Physics, 2020.
    [13] WILLMOTT P. An introduction to synchrotron radiation: techniques and applications [M]. Chichester: Wiley Press, 2011.
    [14] TANAKA T, KITAMURA H. SPECTRA: a synchrotron radiation calculation code [J]. Journal of Synchrotron Radiation, 2001, 8(6): 1221−1228.
    [15] TANAKA T. Major upgrade of the synchrotron radiation calculation code SPECTRA [J]. Journal of Synchrotron Radiation, 2021, 28(4): 1267−1272.
    [16] 孙小沛, 祝万钱, 徐中民, 等. 上海光源时间分辨超小角散射线多层膜单色器的设计 [J]. 核技术, 2019, 42(11): 110101.

    SUN X P, ZHU W Q, XU Z M, et al. Design of a cryo-cooled double multilayer monochromator in USAXS beamline at SSRF [J]. Nuclear Techniques, 2019, 42(11): 110101.
    [17] JIANG Z, WANG E Y, SONG R Q, et al. Optimization of a double crystal monochromator [J]. Journal of the Korean Physical Society, 2021, 79(8): 697–705. doi: 10.1007/s40042-021-00294-w
    [18] KOYAMA T, SENBA Y, YAMAZAKI H, et al. Double-multilayer monochromators for high-energy and large-field X-ray imaging applications with intense pink beams at SPring-8 BL20B2 [J]. Journal of Synchrotron Radiation, 2022, 29(5): 1265−1272.
    [19] SEREBRENNIKOV D A, DIKAYA O A, MAKSIMOVA K Y, et al. Development of a broadband double monochromator based on multilayer supermirrors for hard X-ray spectroscopy on high-intensity beams [J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2019, 13(6): 1209−1216.
    [20] 张帅, 侯溪. K-B镜面形高精度检测技术研究进展 [J]. 中国光学, 2020, 13(4): 660–675. doi: 10.37188/CO.2019-0231

    ZHANG S, HOU X. Research progress of high-precision surface metrology of a K-B mirror [J]. Chinese Optics, 2020, 13(4): 660–675. doi: 10.37188/CO.2019-0231
    [21] CHEN S J, PERNG S Y, TSENG P C, et al. K-B microfocusing system using monolithic flexure-hinge mirrors for synchrotron X-rays [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467/468: 283–286.
    [22] GONG X P, LU Q P, SONG Y. Mechanical design and performance evaluation of K-B mirror system for the ARPES beamline at SSRF [J]. Precision Engineering, 2016, 46: 166–176. doi: 10.1016/j.precisioneng.2016.04.011
    [23] KUJALA N, MARATHE S, SHU D M, et al. Kirkpatrick-Baez mirrors to focus hard X-rays in two dimensions as fabricated, tested and installed at the Advanced Photon Source [J]. Journal of Synchrotron Radiation, 2014, 21(4): 662−668.
    [24] SIEWERT F, BUCHHEIM J, GWALT G, et al. On the characterization of a 1 m long, ultra-precise K-B focusing mirror pair for European XFEL by means of slope measuring deflectometry [J]. Review of Scientific Instruments, 2019, 90(2): 021713. doi: 10.1063/1.5065473
    [25] KIM J, KIM H Y, PARK J, et al. Focusing X-ray free-electron laser pulses using Kirkpatrick-Baez mirrors at the NCI hutch of the PAL-XFEL [J]. Journal of Synchrotron Radiation, 2018, 25(1): 289−292.
    [26] YUMOTO H, KOYAMA T, SUZUKI A, et al. High-fluence and high-gain multilayer focusing optics to enhance spatial resolution in femtosecond X-ray laser imaging [J]. Nature Communications, 2022, 13(1): 5300. doi: 10.1038/s41467-022-33014-4
    [27] BEGUIRISTAIN H R, PIESTRUP M A, PANTELL R H, et al. Development of compound refractive lenses for X-rays [J]. AIP Conference Proceedings, 2000, 521(1): 258–266. doi: 10.1063/1.1291797
    [28] 乐孜纯, 董文, 刘魏, 等. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究 [J]. 物理学报, 2010, 59(3): 1977–1984. doi: 10.7498/aps.59.1977

    LE Z C, DONG W, LIU W, et al. Theoretical and experimental results of focusing performance for the parabolic compound X-ray refractive lenses [J]. Acta Physica Sinica, 2010, 59(3): 1977–1984. doi: 10.7498/aps.59.1977
    [29] SIMONS H, AHL S R, POULSEN H F, et al. Simulating and optimizing compound refractive lens-based X-ray microscopes [J]. Journal of Synchrotron Radiation, 2017, 24(2): 392−401.
    [30] WANG X M, RIGG P, SETHIAN J, et al. The laser shock station in the dynamic compression sector [J]. Review of Scientific Instruments, 2019, 90(5): 053901. doi: 10.1063/1.5088367
    [31] CHEN S, LI Y X, ZHANG N B, et al. Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction [J]. Physical Review Letters, 2019, 123(25): 255501. doi: 10.1103/PhysRevLett.123.255501
    [32] LUO S N, JENSEN B J, HOOKS D E, et al. Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source [J]. Review of Scientific Instruments, 2012, 83(7): 073903. doi: 10.1063/1.4733704
    [33] FAN D, HUANG J W, ZENG X L, et al. Simultaneous, single-pulse, synchrotron X-ray imaging and diffraction under gas gun loading [J]. Review of Scientific Instruments, 2016, 87(5): 053903. doi: 10.1063/1.4950869
    [34] KASHKAROV A O, PRUUEL E R, TEN K A, et al. Measurements of detonation propagation in the plastic explosive in charges of small diameters using synchrotron radiation [J]. Journal of Physics: Conference Series, 2017, 899(4): 042004. doi: 10.1088/1742-6596/899/4/042004
    [35] LI Y X, HUANG J W, FAN D, et al. Deformation twinning in single-crystal Mg under high strain rate tensile loading: a time-resolved X-ray diffraction study [J]. International Journal of Mechanical Sciences, 2022, 220: 107106. doi: 10.1016/j.ijmecsci.2022.107106
    [36] PARAB N D, ROBERTS Z A, HARR M H, et al. High speed X-ray phase contrast imaging of energetic composites under dynamic compression [J]. Applied Physical Letters, 2016, 109(13): 131903. doi: 10.1063/1.4963137
    [37] 王桂吉, 罗斌强, 陈学秒, 等. 磁驱动平面准等熵加载装置、实验技术及应用研究新进展 [J]. 爆炸与冲击, 2021, 41(12): 121403. doi: 10.11883/bzycj-2021-0119

    WANG G J, LUO B Q, CHEN X M, et al. Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression [J]. Explosion and Shock Waves, 2021, 41(12): 121403. doi: 10.11883/bzycj-2021-0119
    [38] SÉVELIN-RADIGUET N, TORCHIO R, BERRUYER G, et al. Towards a dynamic compression facility at the ESRF [J]. Journal of Synchrotron Radiation, 2022, 29(1): 167−179.
    [39] OLBINADO M P, JUST X, GELET J L, et al. MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation [J]. Optics Express, 2017, 25(12): 13857–13871. doi: 10.1364/OE.25.013857
    [40] CERANTOLA V, ROSA A D, KONÔPKOVÁ Z, et al. New frontiers in extreme conditions science at synchrotrons and free electron lasers [J]. Journal of Physics: Condensed Matter, 2021, 33(27): 274003. doi: 10.1088/1361-648X/abfd50
    [41] JAKKULA P, COHEN A, LUKIĆ B, et al. Split Hopkinson tension bar and universal testing machine for high-speed X-ray imaging of materials under tension [J]. Instruments, 2022, 6(3): 38. doi: 10.3390/instruments6030038
    [42] SCHROER C G, AGAPOV I, BREFELD W, et al. PETRA Ⅳ: the ultralow-emittance source project at DESY [J]. Journal of Synchrotron Radiation, 2018, 25(5): 1277−1290.
    [43] SUN T, FEZZAA K. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples [J]. Journal of Synchrotron Radiation, 2016, 23(4): 1046–1053.
    [44] CHEN S, E J C, LUO S N. SLADS: a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems [J]. Journal of Applied Crystallography, 2017, 50(3): 951–958. doi: 10.1107/S1600576717004162
    [45] FORTMANN-GROTE C, ANDREEV A A, BRIGGS R, et al. SIMEX: simulation of experiments at advanced light sources [R]. arXiv preprint arXiv: 1610.05980, 2016.
    [46] SÁNCHEZ DEL RÍO M, DEJUS R J. XOP v2.4: recent developments of the X-ray optics software toolkit [C]//Proceedings of the SPIE 8141, Advances in Computational Methods for X-Ray Optics Ⅱ. San Diego: SPIE, 2011: 814115.
    [47] SÁNCHEZ DEL RÍO M, DEJUS R J. XOP 2.1: a new version of the X-ray optics software toolkit [J]. AIP Conference Proceedings, 2004, 705(1): 784–787. doi: 10.1063/1.1757913
    [48] KLEMENTIEV K, CHERNIKOV R. Powerful scriptable ray tracing package xrt [C]//Proceedings of the SPIE 9209, Advances in Computational Methods for X-Ray Optics Ⅲ. San Diego: SPIE, 2014: 92090A.
    [49] SANCHEZ DEL RIO M, CANESTRARI N, JIANG F, et al. SHADOW3: a new version of the synchrotron X-ray optics modelling package [J]. Journal of Synchrotron Radiation, 2011, 18(5): 708−716.
    [50] REBUFFI L, SÁNCHEZ DEL RÍO M. ShadowOui: a new visual environment for X-ray optics and synchrotron beamline simulations [J]. Journal of Synchrotron Radiation, 2016, 23(6): 1357−1367.
    [51] LAI B, CERRINA F. SHADOW: a synchrotron radiation ray tracing program [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 246(1): 337−341.
    [52] WELNAK C, CHEN G J, CERRINA F. SHADOW: A synchrotron radiation and X-ray optics simulation tool [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 347(1): 344−347.
    [53] REBUFFI L, SANCHEZ DEL RIO M. OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for X-ray virtual experiments [C]//Proceedings of the SPIE 10388, Advances in Computational Methods for X-Ray Optics Ⅳ. San Diego: SPIE, 2017: 103880S.
    [54] CHUBAR O, ELLEAUME P. Accurate and efficient computation of synchrotron radiation in the near field region [C]//Proceedings of the 6th European Particle Accelerator Conference. Stockholm, 1998: 1177−1179.
    [55] NASH B, CHUBAR O, GOLDRING N, et al. Detailed X-ray brightness calculations in the sirepo GUI for SRW [J]. AIP Conference Proceedings, 2019, 2054(1): 060080. doi: 10.1063/1.5084711
    [56] HUANG X R. LauePt, a graphical-user-interface program for simulating and analyzing white-beam X-ray diffraction Laue patterns [J]. Journal of Applied Crystallography, 2010, 43(4): 926–928. doi: 10.1107/S0021889810015013
    [57] HUANG V W, LIU Y, RAGHOTHAMACHAR B, et al. Upgraded LauePt4 for rapid recognition and fitting of Laue patterns from crystals with unknown orientations [J]. Journal of Applied Crystallography, 2023, 56(5): 1610−1615.
    [58] E J C, WANG L, CHEN S, et al. GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code [J]. Journal of Synchrotron Radiation, 2018, 25(2): 604-611.
    [59] Debyer [EB/OL]. [2023-09-28].https://debyer.readthedocs.io/en/latest/#.
    [60] COLEMAN S P, SPEAROT D E, CAPOLUNGO L. Virtual diffraction analysis of Ni [010] symmetric tilt grain boundaries [J].Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055020. doi: 10.1088/0965-0393/21/5/055020
    [61] TOME C, CANOVA G R, KOCKS U F, et al. The relation between macroscopic and microscopic strain hardening in fcc polycrystals [J]. Acta Metallurgica, 1984, 32(10): 1637–1653. doi: 10.1016/0001-6160(84)90222-0
    [62] MISHRA A, KUNKA C, ECHEVERRIA M J, et al. Fingerprinting shock-induced deformations via diffraction [J]. Scientific Reports, 2021, 11(1): 9872. doi: 10.1038/s41598-021-88908-y
    [63] CHEN S, CHAI H W, HE A M, et al. Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small-angle X-ray scattering [J]. Journal of Synchrotron Radiation, 2019, 26(5): 1412–1421.
    [64] ZHANG Y Y, TANG M X, CAI Y, et al. Deducing density and strength of nanocrystalline Ta and diamond under extreme conditions from X-ray diffraction [J]. Journal of Synchrotron Radiation, 2019, 26(2): 413−421.
    [65] LUTTEROTTI L, MATTHIES S, WENK H R. MAUD: a friendly Java program for material analysis using diffraction [J].IUCr: Newsletter of the CPD, 1999, 21: 14–15.
    [66] TOBY B H, VON DREELE R B. GSAS-Ⅱ : the genesis of a modern open-source all purpose crystallography software package [J].Journal of Applied Crystallography, 2013, 46(2): 544–549. doi: 10.1107/S0021889813003531
    [67] BACHMANN F, HIELSCHER R, SCHAEBEN H. Texture analysis with MTEX-free and open source software toolbox [J]. Solid State Phenomena, 2010, 160: 63–68. doi: 10.4028/www.scientific.net/SSP.160.63
    [68] GAO J L, KEDIR N, KIRK C D, et al. High-speed synchrotron X-ray phase-contrast imaging for evaluating microscale damage mechanisms and tracking cracking behaviors inside cross-ply GFRCs [J]. Composites Science and Technology, 2021, 210: 108814. doi: 10.1016/j.compscitech.2021.108814
    [69] GAO J L, FEZZAA K, CHEN W N. Multiscale dynamic experiments on fiber-reinforced composites with damage assessment using high-speed synchrotron X-ray phase-contrast imaging [J]. NDT & E International, 2022, 129: 102636. doi: 10.1016/j.ndteint.2022.102636
    [70] COHEN A, LEVI-HEVRONI D, FRIDMAN P, et al. In-situ radiography of a split-Hopkinson bar dynamically loaded materials [J]. Journal of Instrumentation, 2019, 14: T06008. doi: 10.1088/1748-0221/14/06/T06008
    [71] ZHAI X D, GUO Z R, GAO J L, et al. High-speed X-ray visualization of dynamic crack initiation and propagation in bone [J].Acta Biomaterialia, 2019, 90: 278–286. doi: 10.1016/j.actbio.2019.03.045
    [72] JENSEN B J, RAMOS K J, IVERSON A J, et al. Dynamic experiment using IMPULSE at the Advanced Photon Source [J].Journal of Physics: Conference Series, 2014, 500: 042001. doi: 10.1088/1742-6596/500/4/042001
    [73] BRANCH B A, SPECHT P E, JENSEN S, et al. Detailed meso-scale simulations of the transient deformation in additively manufactured 316L stainless steel lattices characterized by phase contrast imaging [J]. International Journal of Impact Engineering, 2022, 161: 104112. doi: 10.1016/j.ijimpeng.2021.104112
    [74] LIND J, ROBINSON A K, KUMAR M. Insight into the coordinated jetting behavior in periodic lattice structures under dynamic compression [J]. Journal of Applied Physics, 2020, 128(1): 015901. doi: 10.1063/5.0003776
    [75] ESCAURIZA E M, DUARTE J P, CHAPMAN D J, et al. Collapse dynamics of spherical cavities in a solid under shock loading [J]. Scientific Reports, 2020, 10(1): 8455. doi: 10.1038/s41598-020-64669-y
    [76] BRANCH B A, FRANK G, ABBOTT A, et al. Directional shock diode behavior through the interaction of geometric voids in engineered polymer assemblies [J]. Journal of Applied Physics, 2020, 128(24): 245903. doi: 10.1063/5.0029835
    [77] OLLES J D, HUDSPETH M C, TILGER C F, et al. The effect of liquid tamping media on the growth of Richtmyer-Meshkov instability in copper [J]. Journal of Dynamic Behavior of Materials, 2021, 7(2): 338–351. doi: 10.1007/s40870-021-00305-8
    [78] OLBINADO M P, CANTELLI V, MATHON O, et al. Ultra high-speed X-ray imaging of laser-driven shock compression using synchrotron light [J]. Journal of Physics D: Applied Physics, 2018, 51(5): 055601. doi: 10.1088/1361-6463/aaa2f2
    [79] ZHANG D S, YU C, WANG M, et al. In situ transient Laue X-ray diffraction during high strain-rate tension [J]. Review of Scientific Instruments, 2022, 93(3): 033902. doi: 10.1063/5.0079582
    [80] GLEASON A E, BOLME C A, LEE H J, et al. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation [J]. Nature Communications, 2017, 8: 1481. doi: 10.1038/s41467-017-01791-y
    [81] MAGAGNOSC D J, LLOYD J T, MEREDITH C S, et al. Incipient dynamic recrystallization and adiabatic shear bands in Ti-7Al studied via in situ X-ray diffraction [J]. International Journal of Plasticity, 2021, 141: 102992. doi: 10.1016/j.ijplas.2021.102992
    [82] TURNEAURE S J, RENGANATHAN P, WINEY J M, et al. Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-ray diffraction [J]. Physical Review Letters, 2018, 120(26): 265503. doi: 10.1103/PhysRevLett.120.265503
    [83] WILLIAMS C L, KALE C, TURNAGE S A, et al. Real-time observation of twinning-detwinning in shock-compressed magnesium via time-resolved in situ synchrotron XRD experiments [J]. Physical Review Materials, 2020, 4(8): 083603. doi: 10.1103/PhysRevMaterials.4.083603
    [84] ZHANG Y Y, XU Y F, FENG Z D, et al. Impact-induced twinning in a magnesium alloy under different stress conditions [J]. Materials Science and Engineering: A, 2021, 818: 141360. doi: 10.1016/j.msea.2021.141360
    [85] HUBER R C, WATKINS E B, DATTELBAUM D M, et al. In situ X-ray diffraction of high density polyethylene during dynamic drive: polymer chain compression and decomposition [J]. Journal of Applied Physics, 2021, 130(17): 175901. doi: 10.1063/5.0057439
    [86] GANDHI V, RAVINDRAN S, JOSHI A, et al. Real-time characterization of dislocation slip and twinning of shock-compressed molybdenum single crystals [J]. Physical Review Materials, 2023, 7(7): 073601. doi: 10.1103/PhysRevMaterials.7.073601
    [87] SHARMA S M, TURNEAURE S J, WINEY J M, et al. Real-time observation of stacking faults in gold shock compressed to 150 GPa [J]. Physical Review X, 2020, 10(1): 011010. doi: 10.1103/PhysRevX.10.011010
    [88] COLEMAN A L, SINGH S, VENNARI C E, et al. Quantitative measurements of density in shock-compressed silver up to 330 GPa using X-ray diffraction [J]. Journal of Applied Physics, 2022, 131(1): 015901. doi: 10.1063/5.0072208
    [89] D’ALMEIDA T, GUPTA Y M. Real-time X-ray diffraction measurements of the phase transition in KCl shocked along [100] [J].Physical Review Letters, 2000, 85(2): 330–333. doi: 10.1103/PhysRevLett.85.330
    [90] ZHANG Y Y, LI Y X, FAN D, et al. Ultrafast X-ray diffraction visualization of B1-B2 phase transition in KCl under shock compression [J]. Physical Review Letters, 2021, 127(4): 045702. doi: 10.1103/PhysRevLett.127.045702
    [91] HU J B, ICHIYANAGI K, DOKI T. Complex structural dynamics of bismuth under laser-driven compression [J]. Applied Physics Letters, 2013, 103: 161904.
    [92] HU J B, ICHIYANAGI K, TAKAHASHI H, et al. Reversible phase transition in laser-shocked 3Y-TZP ceramics observed via nanosecond time-resolved X-ray diffraction [J]. Journal of Applied Physics, 2012, 111: 053526.
    [93] BISHOP S R, LOWRY D R, PERETTI A S, et al. Dynamic high pressure phase transformation of ZrW2O8 [J]. AIP Advances, 2023, 13(6): 065101. doi: 10.1063/5.0147942
    [94] KALITA P, SPECHT P E, BROWN J L, et al. Real-time atomic scale kinetics of a dynamic event in a model ionic crystal [J].Minerals, 2023, 13(9): 1226. doi: 10.3390/min13091226
    [95] BEASON M T, JENSEN B J, CROCKETT S D. Shock melting and the hcp-bcc phase boundary of Mg under dynamic loading [J].Physical Review B, 2021, 104(14): 144106. doi: 10.1103/PhysRevB.104.144106
    [96] BEASON M T, JENSEN B J. Examination of the cerium α- ε phase transition under dynamic loading with X-ray diffraction [J].Physical Review B, 2022, 105(21): 214107. doi: 10.1103/PhysRevB.105.214107
    [97] SIMS M, BRIGGS R, VOLZ T J, et al. Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions [J]. Journal of Applied Physics, 2022, 132(7): 075902. doi: 10.1063/5.0088607
    [98] HAWRELIAK J A, TURNEAURE S J. Probing the lattice structure of dynamically compressed and released single crystal iron through the alpha to epsilon phase transition [J]. Journal of Applied Physics, 2021, 129(13): 135901. doi: 10.1063/5.0042605
    [99] SINGH S, COLEMAN A L, ZHANG S, et al. Quantitative analysis of diffraction by liquids using a pink-spectrum X-ray source [J]. Journal of Synchrotron Radiation, 2023, 29(4): 1033-1042.
    [100] DUWAL S, MCCOY C A, DOLAN Ⅲ D H, et al. Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ X-ray diffraction [J]. Scientific Reports, 2022, 12(1): 16777. doi: 10.1038/s41598-022-21332-y
    [101] BEASON M T, JENSEN B J, BRANCH B. Investigating shock melting of metals through time-resolved X-ray diffraction of cerium [J]. Journal of Applied Physics, 2020, 128(16): 165107. doi: 10.1063/5.0024715
    [102] TURNEAURE S J, SHARMA S M, GUPTA Y M. Nanosecond melting and recrystallization in shock-compressed silicon [J].Physical Review Letters, 2018, 121(13): 135701. doi: 10.1103/PhysRevLett.121.135701
    [103] RENGANATHAN P, SHARMA S M, TURNEAURE S J, et al. Real-time (nanoseconds) determination of liquid phase growth during shock-induced melting [J]. Science Advances, 2023, 9(8): eade5745. doi: 10.1126/sciadv.ade5745
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  149
  • PDF下载量:  194
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2023-10-05
  • 网络出版日期:  2023-10-30
  • 刊出日期:  2023-11-07

目录

/

返回文章
返回