不同底质条件下近海底爆炸冲击波载荷特性研究

吴易烜 邵岩 谢宇杰 高宏林 张之凡

吴易烜, 邵岩, 谢宇杰, 高宏林, 张之凡. 不同底质条件下近海底爆炸冲击波载荷特性研究[J]. 高压物理学报, 2024, 38(1): 015102. doi: 10.11858/gywlxb.20230744
引用本文: 吴易烜, 邵岩, 谢宇杰, 高宏林, 张之凡. 不同底质条件下近海底爆炸冲击波载荷特性研究[J]. 高压物理学报, 2024, 38(1): 015102. doi: 10.11858/gywlxb.20230744
WU Yixuan, SHAO Yan, XIE Yujie, GAO Honglin, ZHANG Zhifan. Load Characteristics of Underwater Explosion Shock Wave near Seabed Charge Projectile[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015102. doi: 10.11858/gywlxb.20230744
Citation: WU Yixuan, SHAO Yan, XIE Yujie, GAO Honglin, ZHANG Zhifan. Load Characteristics of Underwater Explosion Shock Wave near Seabed Charge Projectile[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015102. doi: 10.11858/gywlxb.20230744

不同底质条件下近海底爆炸冲击波载荷特性研究

doi: 10.11858/gywlxb.20230744
基金项目: 国家自然科学基金(52271307,52192692,52061135107);辽宁省自然科学基金优秀青年基金(2023JH3/10200012);辽宁省兴辽英才计划高水平创新创业团队项目(XLYC1908027);中央高校基本科研业务费专项资金(DUT20TD108);大连市重点领域创新团队支持计划项目(2020RT03)
详细信息
    作者简介:

    吴易烜(1995-),女,硕士研究生,主要从事爆炸力学与毁伤评估研究. E-mail:wuyixuan@nint.ac.cn

    通讯作者:

    张之凡(1990-),女,博士,副教授,主要从事舰船水下爆炸毁伤与防护研究. E-mail:zhifanzhang@dlut.edu.cn

  • 中图分类号: O382.1

Load Characteristics of Underwater Explosion Shock Wave near Seabed Charge Projectile

  • 摘要: 近海底爆炸冲击波会对海底光缆、海底管道等设施造成严重的破坏,不同底质条件的冲击阻抗会影响冲击波的时空演化规律,因此,研究不同底质条件下近海底爆炸冲击波载荷具有重要的意义。基于耦合欧拉-拉格朗日方法建立近海底爆炸模型,探究海底底质对近海底爆炸冲击波载荷的影响,结果显示:测点角度在20°~50°范围内时,海底底质材料会显著影响冲击波峰值压力,近海底反射的影响随爆距比的增加而增强,当测点角度超出该范围时,该现象逐渐消失;海底底质影响范围不随底质的变化而变化,但是在不同底质条件下,受影响区域的反射系数截然不同,当海底底质较软时,海底底质影响区域内的冲击波反射系数在0.81~1.05之间,当海底底质为刚壁时,海底底质影响区域内的冲击波反射系数在0.98~1.33之间;水深不会导致冲击波峰值压力发生显著变化。

     

  • 图  测点分布

    Figure  1.  Distribution of measurement points

    图  不同网格数量下不同测点测得的压力峰值

    Figure  2.  Peak pressures measured at different points and grid numbers

    图  不同距离处冲击波峰值压力对比

    Figure  3.  Comparison of peak pressure of shock waves at different distances

    图  自由场及近海底水下爆炸冲击波压力云图

    Figure  4.  Pressure distribution of free-field and near-seabed underwater explosion shock wave

    图  自由场及近海底工况下测点5-3的水下爆炸冲击波压力时程曲线

    Figure  5.  Time history curves of shock wave pressure at measuring point 5-3 in free field and near seabed underwater explosion

    图  不同测点处的反射系数

    Figure  6.  Reflection coefficient at different measurement points

    图  不同底质条件下测点反射系数的对比

    Figure  7.  Comparison of reflection coefficient of test points under different substrate conditions

    图  不同底质条件下反射系数分布对比

    Figure  8.  Comparison of reflection coefficient distribution under different substrate conditions

    图  不同水深反射系数随测点角度及爆距比的变化关系

    Figure  9.  Relationship between reflection coefficient and explosion distance ratio in different water depths

    表  1  TNT的JWL状态方程参数[12]

    Table  1.   Parameters of JWL equation of state of TNT[12]

    ρ/(g·cm−3) D/(km·s−1) A/GPa B/GPa R1 R2 ω e/(kJ·g−1)
    1.630 6.93 371.2 3.21 4.15 0.95 0.3 4.29
    下载: 导出CSV

    表  2  水的状态方程参数[12]

    Table  2.   Parameters of equation of state of water[12]

    ρ/(g·cm−3) C0/(km·s−1) S Γ0
    1.024 1.483 1.75 0.28
    下载: 导出CSV

    表  3  空气的状态方程参数[12]

    Table  3.   Parameters of equation of state of air[12]

    ρ/(kg·m−3) γ pa/MPa cV/(J·g−1·K−1)
    1.17 1.4 0.10 1.012
    下载: 导出CSV

    表  4  不同海底底质参数[1314]

    Table  4.   Parameters of different seafloor substrates[1314]

    Seafloor sediment ρ/(kg·m−3) E/MPa ν φ/(°) c/MPa
    Model 1 1.4 50 0.3 24 0.1
    下载: 导出CSV

    表  5  数值模拟与经验公式结果对比

    Table  5.   Comparison of numerical simulation and empirical formula results

    R/r Peak pressure/MPa Error/%
    Simulation Empirical formula
    7 205.03 193.72 5.84
    12 96.32 86.90 10.84
    17 60.65 58.62 3.45
    22 43.04 43.81 1.75
    27 32.58 37.91 14.07
    下载: 导出CSV

    表  6  数值模拟工况设置

    Table  6.   Settings of simulation cases

    Case H/m Seafloor sediment Explosive environment
    1 50 Nothing Free field
    2 50 Model 1 Near the seabed
    3 50 Model 2 Near the seabed
    4 100 Model 1 Near the seabed
    5 150 Model 1 Near the seabed
    下载: 导出CSV

    表  7  自由场与近海底测得的冲击波峰值压力对比

    Table  7.   Comparison of peak pressures of free-field and near-seabed underwater explosion shock wave

    R/r α/(°) pmax/MPa Reflection
    coefficient
    R/r α/(°) pmax/MPa Reflection
    coefficient
    Near seabed Free field Near seabed Free field
    7 20 179.29 201.44 0.89 12 60 92.73 95.67 0.97
    7 30 186.21 203.80 0.91 12 70 95.00 97.86 0.97
    7 40 193.43 204.80 0.94 12 80 98.33 93.98 1.05
    7 50 194.98 204.80 0.95 12 90 92.42 96.30 0.96
    7 60 192.78 203.80 0.95 17 20 47.78 58.76 0.81
    7 70 195.10 201.43 0.97 17 30 53.24 59.25 0.90
    7 80 202.46 201.74 1.00 17 40 56.52 58.58 0.96
    7 90 196.41 195.79 1.00 17 50 58.40 58.58 1.00
    12 20 82.82 97.87 0.85 17 60 59.44 59.27 1.00
    12 30 86.62 95.67 0.91 17 70 61.07 60.10 1.02
    12 40 93.96 94.66 0.99 17 80 60.00 61.17 0.98
    12 50 96.23 94.65 1.02 17 90 57.77 59.91 0.96
    下载: 导出CSV
  • [1] BLAKE J R, GIBSON D C. Cavitation bubbles near boundaries [J]. Annual Review of Fluid Mechanics, 1987, 19: 99–123. doi: 10.1146/annurev.fl.19.010187.000531
    [2] 张永坤. 水下爆炸对沉底目标毁伤效应试验验证研究 [J]. 舰船电子工程, 2022, 42(5): 154–159. doi: 10.3969/j.issn.1672-9730.2022.05.034

    ZHANG Y K. Experimental research on the damage effects of bottom torpedoes shocked by underwater explosions [J]. Ship Electronic Engineering, 2022, 42(5): 154–159. doi: 10.3969/j.issn.1672-9730.2022.05.034
    [3] 邵建军, 张永坤, 赵红光, 等. 基于相似理论的炸药海中沉底爆炸能量计算 [J]. 四川兵工学报, 2015, 36(6): 124–127. doi: 10.11809/scbgxb2015.06.031

    SHAO J J, ZHANG Y K, ZHAO H G, et al. Energy calculation of underwater explosion over seabed charge based on similarity law [J]. Journal of Sichuan Ordnance, 2015, 36(6): 124–127. doi: 10.11809/scbgxb2015.06.031
    [4] 杨莉, 汪玉, 黄超, 等. 不同水底介质对有限域中装药沉底爆炸特性的影响 [J]. 高压物理学报, 2012, 26(5): 545–550. doi: 10.11858/gywlxb.2012.05.010

    YANG L, WANG Y, HUANG C, et al. Effects of different grounds on the loading characteristics of limited underwater explosion from a bottom charge [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 545–550. doi: 10.11858/gywlxb.2012.05.010
    [5] 杨莉, 汪玉, 汪斌, 等. 沉底装药水中爆炸现象的实验研究 [J]. 爆炸与冲击, 2013, 33(2): 175–180. doi: 10.11883/1001-1455(2013)02-0175-06

    YANG L, WANG Y, WANG B, et al. Experimental investigation on loading characteristics of underwater explosion from a bottom charge [J]. Explosion and Shock Waves, 2013, 33(2): 175–180. doi: 10.11883/1001-1455(2013)02-0175-06
    [6] 杨莉, 巨圆圆, 武堃, 等. 装药沉底爆炸峰值压力试验及数值模拟研究 [J]. 兵工学报, 2014, 35(Suppl 2): 368–372.

    YANG L, JU Y Y, WU K, et al. Experiment and simulation on peak pressure of underwater explosion of a bottom charge [J]. Acta Armamentarii, 2014, 35(Suppl 2): 368–372.
    [7] 杨莉, 汪玉, 杜志鹏, 等. 沉底装药水下爆炸冲击波传播规律 [J]. 兵工学报, 2013, 34(1): 100–104. doi: 10.3969/j.issn.1000-1093.2013.01.018

    YANG L, WANG Y, DU Z P, et al. Research on shock wave propagation of underwater explosion of bottom charge [J]. Acta Armamentarii, 2013, 34(1): 100–104. doi: 10.3969/j.issn.1000-1093.2013.01.018
    [8] 黄潇, 张玮, 张阿漫. 近海底爆炸气泡对潜艇影响的研究 [J]. 中国造船, 2014, 55(3): 25–35. doi: 10.3969/j.issn.1000-4882.2014.03.003

    HUANG X, ZHANG W, ZHANG A M. Study on the effect of a grounding explosion bubble on submarine [J]. Shipbuilding of China, 2014, 55(3): 25–35. doi: 10.3969/j.issn.1000-4882.2014.03.003
    [9] 姚熊亮, 杨文山, 陈娟, 等. 沉底水雷爆炸威力的数值计算 [J]. 爆炸与冲击, 2011, 31(2): 173–178. doi: 10.11883/1001-1455(2011)02-0173-06

    YAO X L, YANG W S, CHEN J, et al. Numerical calculation of explosion power of mines lying on seabed [J]. Explosion and Shock Waves, 2011, 31(2): 173–178. doi: 10.11883/1001-1455(2011)02-0173-06
    [10] 邵宗战, 宋敬利, 贾则. 沉底水雷爆炸威力测量与评估方法研究 [J]. 水雷战与舰船防护, 2012, 20(1): 15–17, 46.

    SHAO Z Z, SONG J L, JIA Z. Research on the measurement and evaluation methods of the bottom mine’s explosive power [J]. Mine Warfare & Ship Self-Defence, 2012, 20(1): 15–17, 46.
    [11] 叶林征, 祝锡晶, 王建青, 等. 基于CEL不同角度超声空化微射流冲击的仿真分析 [J]. 振动与冲击, 2016, 35(16): 130–134, 157. doi: 10.13465/j.cnki.jvs.2016.16.021

    YE L Z, ZHU X J, WANG J Q, et al. Simulations of ultrasonic cavitation micro-jet impact with different angles based on CEL [J]. Journal of Vibration and Shock, 2016, 35(16): 130–134, 157. doi: 10.13465/j.cnki.jvs.2016.16.021
    [12] 谭皓洋. 基于CEL方法的舰船近场水下爆炸全过程数值模拟研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017.

    TAN H Y. Numerical simulation of the whole process of underwater explosion near warship based on CEL method [D]. Harbin: Harbin Engineering University, 2017.
    [13] AMBROSINI R D, LUCCIONI B M, DANESI R F, et al. Size of craters produced by explosive charges on or above the ground surface [J]. Shock Waves, 2002, 12(1): 69–78. doi: 10.1007/s00193-002-0136-3
    [14] LUCCIONI B, AMBROSINI D, NURICK G, et al. Craters produced by underground explosions [J]. Computers & Structures, 2009, 87(21/22): 1366–1373. doi: 10.1016/j.compstruc.2009.06.002
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  39
  • PDF下载量:  39
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2023-11-08
  • 网络出版日期:  2024-01-30
  • 刊出日期:  2024-02-05

目录

    /

    返回文章
    返回