高温高应变率下钛合金Ti6Al4V的动态力学行为及本构关系

杨东 姜紫薇 郑志军

杨东, 姜紫薇, 郑志军. 高温高应变率下钛合金Ti6Al4V的动态力学行为及本构关系[J]. 高压物理学报, 2024, 38(1): 014101. doi: 10.11858/gywlxb.20230743
引用本文: 杨东, 姜紫薇, 郑志军. 高温高应变率下钛合金Ti6Al4V的动态力学行为及本构关系[J]. 高压物理学报, 2024, 38(1): 014101. doi: 10.11858/gywlxb.20230743
YANG Dong, JIANG Ziwei, ZHENG Zhijun. Dynamic Behavior and Constitutive Relationship of Titanium Alloy Ti6Al4V under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014101. doi: 10.11858/gywlxb.20230743
Citation: YANG Dong, JIANG Ziwei, ZHENG Zhijun. Dynamic Behavior and Constitutive Relationship of Titanium Alloy Ti6Al4V under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014101. doi: 10.11858/gywlxb.20230743

高温高应变率下钛合金Ti6Al4V的动态力学行为及本构关系

doi: 10.11858/gywlxb.20230743
基金项目: 国家自然科学基金(52005002);安徽省高等学校自然科学研究重大项目(2023AH040010)
详细信息
    作者简介:

    杨 东(1985-),男,博士,副教授,主要从事加工过程中材料的动态力学行为研究. E-mail:yangdong@ahu.edu.cn

  • 中图分类号: O347.3; TG146.2

Dynamic Behavior and Constitutive Relationship of Titanium Alloy Ti6Al4V under High Temperature and High Strain Rate

  • 摘要: 采用分离式霍普金森压杆实验技术,研究了钛合金Ti6Al4V在温度为25~800 °C、应变速率为2000~7000 s−1的冲击压缩下的动态力学行为和微观组织演变,分析了其力学响应的温度依赖性和应变率敏感性,构建了可准确表征材料塑性流动行为的修正Johnson-Cook模型。结果表明,Ti6Al4V具有显著的应变硬化、应变率强化、应变率增塑和温度软化效应。随着加载温度和应变率的升高,材料的应变硬化效应减弱。温度敏感性随加载温度的升高而显著降低。应变率敏感性因子与加载温度呈负相关,随真实应变的增大呈下降趋势。高温高应变率下细小等轴α相、拉长型α相和块状α相取代初始等轴α相成为Ti6Al4V微观组织的典型特征。考虑率-温耦合作用和绝热温升影响的修正Johnson-Cook模型能够准确地预测Ti6Al4V的塑性流动应力-应变响应。

     

  • 图  钛合金Ti6Al4V的初始金相组织(a)、晶粒尺寸分布(b)以及EDS (c)

    Figure  1.  Original microstructure (a), grain size distribution (b) and EDS (c) of titanium alloy Ti6Al4V

    图  应力波传播示意图

    Figure  2.  Schematic diagram of stress wave propagation

    图  Ti6Al4V试样在不同温度和应变率条件下的真实应力-应变曲线

    Figure  3.  True stress-strain curves of Ti6Al4V specimens at different temperatures and strain rates

    图  率-热影响下Ti6Al4V的动态屈服强度

    Figure  4.  Dynamic yield strength of Ti6Al4V under the influence of strain rate and temperature

    图  绝热温升随加载温度和应变率的变化

    Figure  5.  Variations of adiabatic temperature rise with loading temperature and strain rate

    图  ΔTT+ΔT对试样工程应变的影响

    Figure  6.  Influence of ΔT and T+ΔT on the engineering strain of specimens

    图  不同温度和应变率下Ti6Al4V的微观组织

    Figure  7.  Microstructures of Ti6Al4V at different temperatures and strain rates

    图  不同加载温度下温度敏感性因子随应变率的变化(ε=0.02)

    Figure  8.  Variation of temperature sensitivity factor with strain rate at different temperatures (ε=0.02)

    图  7000 s−1时应变率敏感性因子随真实应变的变化

    Figure  9.  Variation of strain rate sensitivity factor with true strain at different temperatures (${\dot \varepsilon }_0 $= 7000 s−1)

    图  10  实验数据与J-C修正模型预测值的对比

    Figure  10.  Comparison between experimental data and J-C modified model predictions

    图  11  100 ℃、7000 s−1条件下等温曲线与绝热曲线的对比

    Figure  11.  Comparison of isothermal curve and adiabatic curve at 100 ℃ and 7000 s−1

    图  12  Ti6Al4V在不同加载条件下的实验数据与模型预测对比

    Figure  12.  Comparison of experimental data and model prediction results of Ti6Al4V under different loading conditions

    图  13  不同加载条件下修正模型与实验数据的相关度

    Figure  13.  Correlation degree between the modified model and experimental data under different loading conditions

    图  14  不同加载条件下修正模型的平均相对误差

    Figure  14.  Average relative error of the modified model under different loading conditions

    表  1  修正J-C本构模型参数的拟合结果

    Table  1.   Results of parameter fitting of modified J-C constitutive model

    A/MPaB/MPanC1C2abcdλ/−1
    8947210.1380.0310.1041.0820.009350.020.002860.004
    下载: 导出CSV
  • [1] 姜紫薇, 杨东, 陈建彬. 面向高速切削的钛合金Ti-6Al-4V动态本构模型: 综述 [J]. 航空材料学报, 2023, 43(4): 55–67. doi: 10.11868/j.issn.1005-5053.2022.000169

    JIANG Z W, YANG D, CHEN J B. Dynamic constitutive model of titanium alloy Ti-6Al-4V for high speed cutting: a review [J]. Journal of Aeronautical Materials, 2023, 43(4): 55–67. doi: 10.11868/j.issn.1005-5053.2022.000169
    [2] WANG B, XIAO X R, ASTAKHOV V P, et al. The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V [J]. Engineering Fracture Mechanics, 2019, 219: 106627. doi: 10.1016/j.engfracmech.2019.106627
    [3] LONGÈRE P, DRAGON A. Dynamic vs. quasi-static shear failure of high strength metallic alloys: experimental issues [J]. Mechanics of Materials, 2015, 80: 203–218. doi: 10.1016/j.mechmat.2014.05.001
    [4] ZHANG J, TAN C W, REN Y, et al. Adiabatic shear fracture in Ti-6Al-4V alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2396–2401. doi: 10.1016/S1003-6326(11)61026-1
    [5] 张炜琪, 许泽建, 孙中岳, 等. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理 [J]. 爆炸与冲击, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107

    ZHANG W Q, XU Z J, SUN Z Y, et al. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates [J]. Explosion and Shock Waves, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107
    [6] ZHOU L B, SHIMIZU J, MUROYA A, et al. Material removal mechanism beyond plastic wave propagation rate [J]. Precision Engineering, 2003, 27(2): 109–116. doi: 10.1016/S0141-6359(02)00124-1
    [7] 陈敏. TC4钛合金力学性能测试及动态材料模型研究 [D]. 南京: 南京航空航天大学, 2012: 20–30.

    CHEN M. Research on mechanical properties test and dynamic material model of Ti6Al4V titanium alloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 20–30.
    [8] 周琳, 王子豪, 文鹤鸣. 简论金属材料JC本构模型的精确性 [J]. 高压物理学报, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721

    ZHOU L, WANG Z H, WEN H M. On the accuracy of the Johnson-Cook constitutive model for metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721
    [9] 刘杨, 李志强, 赵冰, 等. TA32钛合金超塑性变形行为及本构模型 [J]. 稀有金属材料与工程, 2022, 51(10): 3752–3761.

    LIU Y, LI Z Q, ZHAO B, et al. Superplastic deformation behavior and constitutive model of TA32 titanium alloy [J]. Rare Metal Materials and Engineering, 2022, 51(10): 3752–3761.
    [10] 桑晔. TC4钛合金薄板高温塑性变形行为及成形性研究 [D]. 长春: 长春工业大学, 2022: 15–16.

    SANG Y. Research on high temperature plastic deformation behavior and formability of TC4 titanium alloy sheet [D]. Changchun: Changchun University of Technology, 2022: 15–16.
    [11] 艾建光, 姜峰, 言兰. TC4-DT钛合金材料动态力学性能及其本构模型 [J]. 中国机械工程, 2017, 28(5): 607–616. doi: 10.3969/j.issn.1004-132X.2017.05.017

    AI J G, JIANG F, YAN L. Dynamic mechanics behavior and constitutive model of TC4-DT titanium alloy materials [J]. China Mechanical Engineering, 2017, 28(5): 607–616. doi: 10.3969/j.issn.1004-132X.2017.05.017
    [12] 桂林. 微观组织对TC4钛合金绝热剪切行为的影响 [D]. 沈阳: 沈阳工业大学, 2021: 32–47.

    GUI L. Effect of microstructure on the adiabatic shear behavior of TC4 titanium alloy [D]. Shenyang: Shenyang University of Technology, 2021: 32–47.
    [13] 《中国航空材料手册》编辑委员会. 中国航空材料手册-第4卷-钛合金 铜合金 [M]. 2版. 北京: 中国标准出版社, 2002: 104.

    Editorial Committee of China Aviation Materials Manual. China aeronautical materials manual: volume 4: titanium alloy copper alloy [M]. 2nd ed. Beijing: Standards Press of China, 2002: 104.
    [14] YADAV R, CHAKLADAR N D, PAUL S. A dynamic recrystallization based constitutive flow model for micro-machining of Ti-6Al-4V [J]. Journal of Manufacturing Processes, 2022, 77: 463–484. doi: 10.1016/j.jmapro.2022.03.040
    [15] YANG J Z, WU J J, XIE H N, et al. Mechanism of continuous dynamic recrystallization of Ti-6Al-4V alloy during superplastic forming with sub-grain rotation [J]. Transactions of Nonferrous Metals Society of China, 2023, 33(3): 777–788. doi: 10.1016/S1003-6326(23)66145-X
    [16] 牛秋林, 陈明, 明伟伟. TC17钛合金在高温与高应变率下的动态压缩力学行为研究 [J]. 中国机械工程, 2017, 28(23): 2888–2892, 2897. doi: 10.3969/j.issn.1004-132X.2017.23.017

    NIU Q L, CHEN M, MING W W. Study on dynamic compressive mechanics behavior of TC17 titanium alloy at high temperature and high strain rates [J]. China Mechanical Engineering, 2017, 28(23): 2888–2892, 2897. doi: 10.3969/j.issn.1004-132X.2017.23.017
    [17] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
    [18] XU Z J, HUANG F L. Thermomechanical behavior and constitutive modeling of tungsten-based composite over wide temperature and strain rate ranges [J]. International Journal of Plasticity, 2013, 40: 163–184. doi: 10.1016/j.ijplas.2012.08.004
    [19] LIANG R Q, KHAN A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures [J]. International Journal of Plasticity, 1999, 15(9): 963–980. doi: 10.1016/S0749-6419(99)00021-2
    [20] 李云飞, 曾祥国. TC21钛合金动态拉伸行为的率-热效应及其本构关系 [J]. 稀有金属材料与工程, 2018, 47(6): 1760–1765.

    LI Y F, ZENG X G. Effect of strain rate and temperature on the dynamic tensile behavior and constitutive model of TC21 titanium alloy [J]. Rare Metal Materials and Engineering, 2018, 47(6): 1760–1765.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  54
  • PDF下载量:  58
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-10-12
  • 网络出版日期:  2023-12-19
  • 刊出日期:  2024-02-05

目录

    /

    返回文章
    返回