Kevlar纤维及碳纤维背衬下SiC陶瓷和弹丸的破碎特性

马铭辉 武一丁 王晓东 余毅磊 周玄 高光发 褚庆国

马铭辉, 武一丁, 王晓东, 余毅磊, 周玄, 高光发, 褚庆国. Kevlar纤维及碳纤维背衬下SiC陶瓷和弹丸的破碎特性[J]. 高压物理学报, 2023, 37(6): 064101. doi: 10.11858/gywlxb.20230736
引用本文: 马铭辉, 武一丁, 王晓东, 余毅磊, 周玄, 高光发, 褚庆国. Kevlar纤维及碳纤维背衬下SiC陶瓷和弹丸的破碎特性[J]. 高压物理学报, 2023, 37(6): 064101. doi: 10.11858/gywlxb.20230736
MA Minghui, WU Yiding, WANG Xiaodong, YU Yilei, ZHOU Xuan, GAO Guangfa, CHU Qingguo. Crushing Characteristics of SiC Ceramics and Projectiles under Kevlar/Carbon Fiber Backing[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 064101. doi: 10.11858/gywlxb.20230736
Citation: MA Minghui, WU Yiding, WANG Xiaodong, YU Yilei, ZHOU Xuan, GAO Guangfa, CHU Qingguo. Crushing Characteristics of SiC Ceramics and Projectiles under Kevlar/Carbon Fiber Backing[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 064101. doi: 10.11858/gywlxb.20230736

Kevlar纤维及碳纤维背衬下SiC陶瓷和弹丸的破碎特性

doi: 10.11858/gywlxb.20230736
基金项目: 国家自然科学基金(12172179,11772160,11472008)
详细信息
    作者简介:

    马铭辉(1996-),男,博士研究生,主要从事冲击动力学研究. E-mail:maminghui@njust.edu.cn

    通讯作者:

    褚庆国(1971-),男,工程师,主要从事冲击动力学研究. E-mail:wwangshifu@163.com

  • 中图分类号: O382.1; O385

Crushing Characteristics of SiC Ceramics and Projectiles under Kevlar/Carbon Fiber Backing

  • 摘要: 陶瓷/纤维复合装甲的抗弹性能与弹靶的破碎特性之间有明显的关联。当背板材料不同时,波阻抗差异会影响陶瓷与背板之间的应力波传播,使弹丸和陶瓷面板产生不同的破碎现象,致使复合靶板的防护性能有所不同。针对弹丸侵彻不同纤维背板的陶瓷复合装甲时的弹靶破碎特性,开展了12.7 mm口径的穿燃弹侵彻陶瓷/Kevlar纤维复合靶板和陶瓷/碳纤维复合靶板的弹道试验,结合Rosin-Rammer分布模型,对两类陶瓷/纤维复合靶板的防护性能进行分析。结果表明:弹芯撞击陶瓷面板时发生的断裂主要由其内部的拉剪应力造成;当背板为碳纤维时,弹芯碎片的平均特征尺寸比背板为Kevlar纤维时小21.68%,陶瓷碎片的平均特征尺寸减小约9.48%,即弹芯和陶瓷的小尺寸碎片占比更大,同时,复合靶板的整体抗弹性能更优。

     

  • 图  试验现场设置

    Figure  1.  Layout of test site

    图  靶板结构示意图

    Figure  2.  Schematic diagram of target plate structure

    图  撞击不同背板后弹芯尾部碎片

    Figure  3.  Tail fragments of bullet core after impacting different back plates

    图  陶瓷面板的破碎情况

    Figure  4.  Broken of ceramic panels

    图  纤维背板的破坏情况

    Figure  5.  Damage of fiber back plate

    图  纤维背板背面的鼓包

    Figure  6.  Back bulge of fiber back plate

    图  不同尺寸的弹芯碎片

    Figure  7.  Bullet core fragments with different sizes

    图  弹芯碎片的质量分布

    Figure  8.  Mass distribution of bullet core fragments

    图  弹芯碎片的粒径分布

    Figure  9.  Particle size distribution of bullet core fragments

    图  10  弹芯碎片的幂指数系数和平均特征尺寸

    Figure  10.  Power exponent coefficient and average characteristic size of core fragments

    图  11  陶瓷碎片的粒径分布

    Figure  11.  Particle size distribution of ceramic fragments

    图  12  陶瓷碎片的幂指数系数和平均特征尺寸

    Figure  12.  Power exponent coefficient and average characteristic size of ceramic fragments

    表  1  试验结构配置

    Table  1.   Structure configuration of the tests

    Test No.Target configurationVelocity/(m·s−1)Areal density/(g·cm−2)
    Front panelBack board
    15K-1SiC, 12 mmKevlar, 15 mm478.56.0
    15K-2SiC, 12 mmKevlar, 15 mm480.66.0
    15T-1SiC, 12 mmT300, 15 mm481.56.2
    15T-2SiC, 12 mmT300, 15 mm479.16.2
    下载: 导出CSV
  • [1] WILKINS M L. Mechanics of penetration and perforation [J]. International Journal of Engineering Science, 1978, 16(11): 793–807. doi: 10.1016/0020-7225(78)90066-6
    [2] HOGG P J. Composites in armor [J]. Science, 2006, 314(5802): 1100–1101. doi: 10.1126/science.1131118
    [3] KARANDIKAR P G, EVANS G, WONG S, et al. A review of ceramics for armor applications [M]//FRANKS L P. Advances in Ceramic Armor Ⅳ Ceramic Engineering and Science Proceedings. The American Ceramic Society, 2008, 29(6): 163–175.
    [4] KARTIKEYA K, CHOUHAN H, RAM K, et al. Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles [J]. International Journal of Impact Engineering, 2022, 164: 104211. doi: 10.1016/j.ijimpeng.2022.104211
    [5] WU K K, CHEN Y L, YEH J N, et al. Ballistic impact performance of SiC ceramic-dyneema fiber composite materials [J]. Advances in Materials Science and Engineering, 2020: 9457489. doi: 10.1155/2020/9457489
    [6] TEPEDUZU B, KARAKUZU R. Ballistic performance of ceramic/composite structures [J]. Ceramics International, 2019, 45(2): 1651–1660. doi: 10.1016/j.ceramint.2018.10.042
    [7] MONTEIRO S N, LIMA E P JR, LOURO L H L, et al. Unlocking function of aramid fibers in multilayered ballistic armor [J]. Metallurgical and Materials Transactions A, 2015, 46(1): 37–40. doi: 10.1007/s11661-014-2678-2
    [8] AKELLA K, NAIK N K. Composite armour: a review [J]. Journal of the Indian Institute of Science, 2015, 95(3): 297–312.
    [9] TASDEMIRCI A, TUNUSOGLU G, GÜDEN M. The effect of the interlayer on the ballistic performance of ceramic/composite armors: experimental and numerical study [J]. International Journal of Impact Engineering, 2012, 44: 1–9. doi: 10.1016/j.ijimpeng.2011.12.005
    [10] 余毅磊, 王晓东, 任文科, 等. 陶瓷/金属复合靶受12.7 mm穿甲燃烧弹侵彻时弹靶破碎特征 [J]. 兵工学报, 2022, 43(9): 2307–2317. doi: 10.12382/bgxb.2021.0497

    YU Y L, WANG X D, REN W K, et al. Fragmentation characteristics of 12.7 mm armor-piercing incendiary projectile and ceramic/metal composite target during penetration [J]. Acta Armamentarii, 2022, 43(9): 2307–2317. doi: 10.12382/bgxb.2021.0497
    [11] 王晓东, 余毅磊, 蒋招绣, 等. 不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究 [J]. 爆炸与冲击, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181

    WANG X D, YU Y L, JIANG Z X, et al. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities [J]. Explosion and Shock Waves, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181
    [12] 余毅磊, 蒋招绣, 王晓东, 等. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究 [J]. 爆炸与冲击, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134

    YU Y L, JIANG Z X, WANG X D, et al. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration [J]. Explosion and Shock Waves, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134
    [13] SEIFERT W, STRASSBURGER E, DOLAK M, et al. Experimental study on the dependency of the ballistic performance of tiled ceramic/metal targets on inter tile gap width and projectile impact position [J]. International Journal of Impact Engineering, 2018, 122: 50–59. doi: 10.1016/j.ijimpeng.2018.08.006
    [14] 王维占, 赵太勇, 冯顺山, 等. 12.7 mm动能弹斜侵彻复合装甲的数值模拟研究 [J]. 爆炸与冲击, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425

    WANG W Z, ZHAO T Y, FENG S S, et al. Numerical simulation study on penetration of a 12.7 mm kinetic energy bullet into a composite armor [J]. Explosion and Shock Waves, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425
    [15] DI BENEDETTO G, MATTEIS P, SCAVINO G. Impact behavior and ballistic efficiency of armor-piercing projectiles with tool steel cores [J]. International Journal of Impact Engineering, 2018, 115: 10–18. doi: 10.1016/j.ijimpeng.2017.12.021
    [16] SAVIO S G, SENTHIL P, SINGH V, et al. An experimental study on the projectile defeat mechanism of hard steel projectile against boron carbide tiles [J]. International Journal of Impact Engineering, 2015, 86: 157–166. doi: 10.1016/j.ijimpeng.2015.07.011
    [17] WU Y D, WANG X D, MA M H, et al. Research on the anti-penetration behavior and failure mode analysis of different ceramics [J]. Ceramics International, 2023, 15(29): 117–135. doi: 10.1016/j.ceramint.2023.08.300
    [18] 余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响 [J]. 北京理工大学学报, 2021, 41(7): 713–720. doi: 10.15918/j.tbit1001-0645.2020.107

    YU Y L, JIANG Z X, WANG X D, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles [J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 713–720. doi: 10.15918/j.tbit1001-0645.2020.107
    [19] GONZÁLEZ-TELLO P, CAMACHO F, VICARIA J M, et al. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis [J]. Powder Technology, 2008, 186(3): 278–281. doi: 10.1016/j.powtec.2007.12.011
    [20] JIANG Y, QIAN K, ZHANG Y L, et al. Experimental characterisation and numerical simulation of ballistic penetration of columnar ceramic/fiber laminate composite armor [J]. Materials & Design, 2022, 224: 111394. doi: 10.1016/J.MATDES.2022.111394
    [21] XIE Y, WANG T, WANG L M, et al. Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile [J]. Ceramics International, 2022, 48(16): 24079–24090. doi: 10.1016/J.CERAMINT.2022.05.088
    [22] GRADY D E. Fragmentation of rings and shells: the legacy of N. F. Mott [M]. Berlin, Germany: Springer, 2006.
    [23] GRADY D E. Fragment size distributions from the dynamic fragmentation of brittle solids [J]. International Journal of Impact Engineering, 2008, 35(12): 1557–1562. doi: 10.1016/j.ijimpeng.2008.07.042
    [24] 张青艳. 脆性材料在准静态和冲击压缩载荷作用下的动态碎裂过程 [D]. 宁波: 宁波大学, 2019: 26–46.

    ZHANG Q Y. Fragmentations of brittle materials under quasi-static and dynamic compression [D]. Ningbo: Ningbo University, 2019: 26–46.
    [25] WU Y D, WANG X D, MA M H, et al. Breaking behavior and stress distribution of T12A hard steel core penetrating ceramic/aluminum alloy lightweight composite armor [J]. Materials Today Communications, 2023, 37: 107115. doi: 10.1016/J.MTCOMM.2023.107115
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  50
  • PDF下载量:  42
出版历程
  • 收稿日期:  2023-09-18
  • 修回日期:  2023-10-20
  • 网络出版日期:  2023-11-29
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回