CO2-多孔材料协同抑制甲烷爆炸特性

向开军 段玉龙 何国钦 黄维

向开军, 段玉龙, 何国钦, 黄维. CO2-多孔材料协同抑制甲烷爆炸特性[J]. 高压物理学报, 2024, 38(1): 015201. doi: 10.11858/gywlxb.20230730
引用本文: 向开军, 段玉龙, 何国钦, 黄维. CO2-多孔材料协同抑制甲烷爆炸特性[J]. 高压物理学报, 2024, 38(1): 015201. doi: 10.11858/gywlxb.20230730
XIANG Kaijun, DUAN Yulong, HE Guoqin, HUANG Wei. Co-Inhibition of Methane Explosion by CO2-Porous Materials[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015201. doi: 10.11858/gywlxb.20230730
Citation: XIANG Kaijun, DUAN Yulong, HE Guoqin, HUANG Wei. Co-Inhibition of Methane Explosion by CO2-Porous Materials[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015201. doi: 10.11858/gywlxb.20230730

CO2-多孔材料协同抑制甲烷爆炸特性

doi: 10.11858/gywlxb.20230730
基金项目: 重庆市教委科学技术研究项目(KJQN202101503, KJQN201901549)
详细信息
    作者简介:

    向开军(1980-),男,博士,高级工程师,主要从事矿山安全研究. E-mail:39724374@qq.com

    通讯作者:

    段玉龙(1982-),男,博士,副教授,主要从事油气爆炸动力学研究. E-mail:dylnhz@126.com

  • 中图分类号: O382.1; X932

Co-Inhibition of Methane Explosion by CO2-Porous Materials

  • 摘要: 为探究CO2协同多孔材料对甲烷爆炸特性的影响,自主设计了100 mm×100 mm×1000 mm爆炸管道并搭建实验平台,研究不同多孔材料孔隙度及CO2喷气压力对甲烷爆炸火焰结构、火焰传播速度和爆炸超压的影响。结果表明:多孔材料对火焰波有衰减和促进2种效果,当多孔材料孔隙度为10和20 PPI时,未能成功阻爆,而当孔隙度为40 PPI时,阻爆效果明显;CO2喷气压力有一定的阻爆效果,当多孔材料为10和20 PPI时,随着CO2喷气压力的升高,火焰速度峰值逐渐减小,衰减率最大可达13.64%,且爆炸超压峰值也随之下降,其衰减率最大可达52.83%。综合火焰速度和压力变化分析可知,当多孔材料的孔隙度为40 PPI、CO2喷气压力为0.4 MPa时,阻抑爆效果最显著。

     

  • 图  实验装置

    Figure  1.  Experimental device

    图  0 MPa时火焰结构的变化

    Figure  2.  Changes of the flame structure at 0 MPa

    图  0.2 MPa时火焰结构的变化

    Figure  3.  Changes of the flame structure at 0.2 MPa

    图  0.4 MPa时火焰结构的变化

    Figure  4.  Changes of the flame structure at 0.4 MPa

    图  火焰锋面速度变化曲线

    Figure  5.  Velocity curves of flame front

    图  各工况下爆炸超压变化曲线

    Figure  6.  Explosion overpressure curve under different conditions

    图  各工况下压力峰值的对比

    Figure  7.  Comparison of peak pressure under different conditions

    表  1  实验工况

    Table  1.   Experimental conditions

    Case CO2 pressure/MPa Porosity/PPI Case CO2 pressure/MPa Porosity/PPI
    1 0 10 6 0.2 40
    2 0 20 7 0.4 10
    3 0 40 8 0.4 20
    4 0.2 10 9 0.4 40
    5 0.2 20
    下载: 导出CSV

    表  2  各工况下爆炸超压峰值及超压峰值衰减率

    Table  2.   Peak overpressure under each working condition and the attenuation rate of peak overpressure

    CO2 pressure/MPa Porosity/PPI Peak explosion pressure/kPa Attenuation rate/%
    p1-peak p2-peak p1-peak p2-peak
    0
    10 67.13 76.15
    20 55.25 52.79
    40 15.90 21.98
    0.2 10 60.05 60.91 10.54 20.96
    20 51.56 47.95 6.68 9.17
    40 9.00 20.11 43.40 8.51
    0.4 10 55.42 56.38 17.44 25.96
    20 48.89 46.92 11.51 11.12
    40 7.50 20.73 52.83 5.69
    下载: 导出CSV
  • [1] 武双贺. 多孔材料对管道内爆炸火焰抑制的实验研究 [D]. 北京: 北京理工大学, 2018.

    WU S H. Experimental study on the suppression of explosion flame in pipelines with porous materials [D]. Beijing: Beijing Institute of Technology, 2018.
    [2] 陈鹏, 黄福军, 何昕, 等. 多孔材料对管道内甲烷-空气预混火焰传播的影响 [J]. 工业安全与环保, 2016, 42(1): 49–52. doi: 10.3969/j.issn.1001-425X.2016.01.015

    CHEN P, HUANG F J, HE X, et al. Effects of different porous foam upon premixed methane/air flame propagation in closed ducts [J]. Industrial Safety and Environmental Protection, 2016, 42(1): 49–52. doi: 10.3969/j.issn.1001-425X.2016.01.015
    [3] DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2020, 69: 104370.
    [4] 王涛. 管道内甲烷爆炸特性及CO2抑爆的实验与数值模拟研究 [D]. 西安: 西安科技大学, 2014.

    WANG T. Experimental and numerical studies on methane explosion and the suppression effect of CO2 in vessel [D]. Xi’an: Xi’an University of Science and Technology, 2014.
    [5] 路长, 张运鹏, 朱寒, 等. 氮气喷出对管道瓦斯爆炸的阻爆研究 [J]. 爆炸与冲击, 2020, 40(4): 042101. doi: 10.11883/bzycj-2019-0106

    LU L, ZHANG Y P, ZHU H, et al. The spurted nitrogen preventing the gas explosion in pipe [J]. Explosion and Shock Waves, 2020, 40(4): 042101. doi: 10.11883/bzycj-2019-0106
    [6] 钱海林, 王志荣, 蒋军成, 等. N2/CO2混合气体对甲烷爆炸的影响 [J]. 爆炸与冲击, 2012, 32(4): 445–448. doi: 10.3969/j.issn.1001-1455.2012.04.016

    QIAN H L, WANG Z R, JIANG J C, et al. Influence of N2/CO2 mixture on methane explosion [J]. Explosion and Shock Waves, 2012, 32(4): 445–448. doi: 10.3969/j.issn.1001-1455.2012.04.016
    [7] YU M, LIU M, WEN X, et al. Experimental study on suppression of methane explosion by porous media and ultra-fine water mist [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(1): 1751–1764.
    [8] 郭成成, 王飞, 刘红威, 等. 惰性气体-细水雾抑制瓦斯爆炸对比分析 [J]. 煤矿安全, 2018, 49(6): 164–167. doi: 10.13347/j.cnki.mkaq.2018.06.043

    GUO C C, WANG F, LIU H W, et al. Comparative analysis of gas explosion suppression by water mist of inert gas [J]. Safety in Coal Mines, 2018, 49(6): 164–167. doi: 10.13347/j.cnki.mkaq.2018.06.043
    [9] PEI B, YANG Y, LI J, et al. Experimental study on suppression effect of inert gas two fluid water mist system on methane explosion [J]. Procedia Engineering, 2018, 11: 565–574.
    [10] 郑露露, 龙凤英, 温子阳, 等. 多孔材料-CO2对CH4/H2抑爆失效研究 [J]. 安全, 2022, 43(9): 24–30,36.

    ZHENG L L, LONG F Y, WEN Z Y, et al. Study on explosion suppression failure of porous material-CO2 to CH4/H2 [J]. Safety & Security, 2022, 43(9): 24–30,36.
    [11] PEI B, YU M, CHEN L, et al. Experimental study on the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 546–553. doi: 10.1016/j.jlp.2016.02.005
    [12] WANG C, HUANG F L, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. doi: 10.1016/j.jlp.2016.05.021
    [13] ZHANG J F, SUN Z Q, ZHENG Y M, et al. Coupling effects of foam ceramics on the flame and shock wave of gas explosion [J]. Safety Science, 2012, 50(4): 797–800. doi: 10.1016/j.ssci.2011.08.031
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  20
  • PDF下载量:  21
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-10-30
  • 网络出版日期:  2024-02-01
  • 刊出日期:  2024-02-05

目录

    /

    返回文章
    返回