近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能

赵春风 张利 李晓杰

赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能[J]. 高压物理学报, 2024, 38(1): 014102. doi: 10.11858/gywlxb.20230727
引用本文: 赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能[J]. 高压物理学报, 2024, 38(1): 014102. doi: 10.11858/gywlxb.20230727
ZHAO Chunfeng, ZHANG Li, LI Xiaojie. Damage Failure and Anti-Blast Performance of Concrete-Infilled Double Steel Corrugated-Plate Wall under Near Field Explosion[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. doi: 10.11858/gywlxb.20230727
Citation: ZHAO Chunfeng, ZHANG Li, LI Xiaojie. Damage Failure and Anti-Blast Performance of Concrete-Infilled Double Steel Corrugated-Plate Wall under Near Field Explosion[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. doi: 10.11858/gywlxb.20230727

近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能

doi: 10.11858/gywlxb.20230727
基金项目: 合肥市自然科学基金(2021028);大连理工大学工业装备结构分析国家重点实验室开放基金(GZ21112)
详细信息
    作者简介:

    赵春风(1983-),男,博士,教授,主要从事工程结构抗震与减震、组合结构抗爆研究. E-mail:zhaowindy@hfut.edu.cn

  • 中图分类号: O382.1

Damage Failure and Anti-Blast Performance of Concrete-Infilled Double Steel Corrugated-Plate Wall under Near Field Explosion

  • 摘要: 相对于传统的钢筋混凝土墙板和平面双钢板-混凝土组合墙板(profiled double-skin composite wall,PDSCW),波纹双钢板-混凝土组合墙板(concrete-infilled double steel corrugated-plate wall,CDSCW)具有更高的轴向抗压承载力、更大的侧向抗弯刚度以及良好的抗冲击和抗震性能,在船舶和军事领域有广阔的应用前景。制作2种CDSCW试件,通过近场爆炸试验对比分析了2种试件的损伤模式及动态响应;采用ANSYS/LS-DYNA软件建立了CDSCW和PDSCW的有限元模型,研究了近场爆炸下2种混凝土组合墙板的损伤机理和爆炸响应,并与试验结果进行对比分析;分析了混凝土厚度、钢板厚度、药量对CDSCW抗爆性能的影响。结果表明:近场爆炸作用下,相较于PDSCW,相同混凝土方量和尺寸(长、宽)的CDSCW具有更大的抗弯刚度、更强的抗变形能力以及更优的抗爆性能;增加波纹深度能有效提高CDSCW的抗爆性能,可为抗爆构件设计和相关工程研究提供参考。

     

  • 图  CDSCW的截面(单位:mm)

    Figure  1.  Cross-section of CDSCW (Unit: mm)

    图  CDSCW1 的平面布置及实物(单位:mm)

    Figure  2.  Layout and physical objects of CDSCW1 (Unit: mm)

    图  试验布置

    Figure  3.  Experiment setup

    图  CDSCW1的损伤破坏

    Figure  4.  Damage of CDSCW1

    图  CDSCW2的损伤破坏

    Figure  5.  Damage of CDSCW2

    图  有限元模型

    Figure  6.  Finite element model

    图  空间离散化分析

    Figure  7.  Spatial discretization analysis

    图  PCB测点的压力时程曲线

    Figure  8.  Pressure time history curve of measuring point PCB

    图  CDSCW1试件的整体损伤

    Figure  9.  Overall damage of CDSCW1

    图  10  CDSCW1 混凝土的有效塑性应变

    Figure  10.  Effective plastic strain of the concrete in CDSCW1

    图  11  CDSCW1的变形

    Figure  11.  Deformation of CDSCW1

    图  12  CDSCW2的整体损伤

    Figure  12.  Overall damage of CDSCW2

    图  13  混凝土有效塑性应变(CDSCW2)

    Figure  13.  Effective plastic strains of the concrete (CDSCW2)

    图  14  CDSCW2的变形

    Figure  14.  Deformation of CDSCW2

    图  15  PDSCW的平面布置(单位:mm)

    Figure  15.  Plans of PDSCW (Unit: mm)

    图  16  CDSCW与PDSCW的跨中位移

    Figure  16.  Midpoint displacements of CDSCW and PDSCW

    图  17  CDSCW与PDSCW的跨中最大位移和残余位移

    Figure  17.  Maximum and residual midpoint displacements of CDSCW and PDSCW

    图  18  PDSCW的混凝土损伤

    Figure  18.  Concrete damage of PDSCW

    图  19  不同混凝土厚度下CDSCW的跨中位移-时间变化曲线

    Figure  19.  Midpoint displacement-time curves of CDSCW with different concrete thicknesses

    图  20  不同混凝土厚度下CDSCW的跨中最大位移和残余位移

    Figure  20.  Maximum and residual midpoint displacements of CDSCW with different concrete thicknesses

    图  21  不同混凝土厚度下混凝土的有效塑性应变

    Figure  21.  Effective plastic strain of the concrete under different concrete thicknesses

    图  22  不同钢板厚度下CDSCW的中心点位移变化曲线

    Figure  22.  Midpoint displacement-time curves of CDSCW with different steel thicknesses

    图  23  不同钢板厚度下CDSCW的跨中最大位移和残余位移

    Figure  23.  Maximum and residual midpoint displacements of CDSCW with different steel thicknesses

    图  24  不同钢板厚度下CDSCW中混凝土的有效塑性应变

    Figure  24.  Effective plastic strain of the concrete under different steel thicknesses

    图  25  不同TNT药量下CDSCW的中心点位移变化曲线

    Figure  25.  Midpoint displacement-time curves of CDSCW under different TNT quantities

    图  26  不同TNT药量下CDSCW的跨中最大和残余位移

    Figure  26.  Maximum and residual midpoint displacements of CDSCW under different TNT quantities

    图  27  不同TNT当量下CDSCW的有效混凝土塑性应变

    Figure  27.  Effective plastic strain of the concrete under different TNT quantities

    表  1  混凝土主要材料参数

    Table  1.   Mechanical properties of concrete

    ρc/(g·cm−3) fc/MPa ft/MPa μc b1 b2 b3 λm α αc αd
    2.408 52.4 4.2 0.19 1.6 2 1.15 8.7×10−5 3 0.294 1.86
    下载: 导出CSV

    表  2  CDSCW和PDSCW的损伤对比

    Table  2.   Damage comparison of PDSCW and CDSCW

    Specimen Blast side damage Simulated rear
    side damage
    Simulated damage
    near support
    Midpoint displacement of
    lower steel plate/mm
    Test Simulation Test Simulation
    CDSCW1 120.0 109.0
    CDSCW2 95.0 90.4
    PDSCW 175.3
    下载: 导出CSV
  • [1] ZINEDDIN M, KRAUTHAMMER T. Dynamic response and behavior of reinforced concrete slabs under impact loading [J]. International Journal of Impact Engineering, 2007, 34(9): 1517–1534. doi: 10.1016/j.ijimpeng.2006.10.012
    [2] WU J, LIU Z C, YU J, et al. Experimental and numerical investigation of normal reinforced concrete panel strengthened with polyurea under near-field explosion [J]. Journal of Building Engineering, 2022, 46: 103763. doi: 10.1016/j.jobe.2021.103763
    [3] 李圣童, 汪维, 梁仕发, 等. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应 [J]. 爆炸与冲击, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495

    LI S T, WANG W, LIANG S F, et al. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load [J]. Explosion and Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495
    [4] 方志强, 吕平, 张锐, 等. 抗爆型聚脲涂层的性能及其抗爆机理 [J]. 高压物理学报, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840

    FANG Z Q, LV P, ZHANG R, et al. Blast-resistant properties and mechanism of anti-explosion polyurea coating [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840
    [5] 姜策, 肖李军, 宋卫东. 聚脲/铝分层复合结构的抗爆性能研究 [J]. 高压物理学报, 2023, 37(3): 034202. doi: 10.11858/gywlxb.20230610

    JIANG C, XIAO L J, SONG W D. Blast resistance of polyurea/aluminum composite structures [J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034202. doi: 10.11858/gywlxb.20230610
    [6] WANG Y H, SAH T P, LIU S T, et al. Experimental and numerical studies on novel stiffener-enhanced steel-concrete-steel sandwich panels subjected to impact loading [J]. Journal of Building Engineering, 2022, 45: 103479. doi: 10.1016/j.jobe.2021.103479
    [7] 赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. doi: 10.11883/bzycj-2020-0058

    ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. doi: 10.11883/bzycj-2020-0058
    [8] 赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. doi: 10.11883/bzycj-2020-0291

    ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. doi: 10.11883/bzycj-2020-0291
    [9] 赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205

    ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J]. Explosion and Shock Waves, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205
    [10] CHEN W S, HAO H, DU H. Failure analysis of corrugated panel subjected to windborne debris impacts [J]. Engineering Failure Analysis, 2014, 44: 229–249. doi: 10.1016/j.engfailanal.2014.05.017
    [11] CHENG Y S, LIU M X, ZHANG P, et al. The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading: experimental investigations [J]. International Journal of Mechanical Sciences, 2018, 145: 378–388. doi: 10.1016/j.ijmecsci.2018.07.030
    [12] WANG X, HE C, YUE Z S, et al. Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels [J]. Composites Part B: Engineering, 2022, 237: 109840. doi: 10.1016/j.compositesb.2022.109840
    [13] ZHANG P, CHENG Y S, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading [J]. Marine Structures, 2015, 40: 225–246. doi: 10.1016/j.marstruc.2014.11.007
    [14] 杨程风, 闫俊伯, 刘彦, 等. 接触爆炸载荷下波纹钢加固钢筋混凝土板毁伤特征分析 [J]. 北京理工大学学报, 2022, 42(5): 453–462. doi: 10.15918/j.tbit1001-0645.2021.108

    YANG C F, YAN J B, LIU Y, et al. Damage characteristics of corrugated steel concrete slab under contact explosion load [J]. Transactions of Beijing Institute of Technology, 2022, 42(5): 453–462. doi: 10.15918/j.tbit1001-0645.2021.108
    [15] LU J Y, WANG Y H, ZHAI X M. Response of flat steel-concrete-corrugated steel sandwich panel under drop-weight impact load by a hemi-spherical head [J]. Journal of Building Engineering, 2021, 44: 102890. doi: 10.1016/J.JOBE.2021.102890
    [16] YAZICI M, WRIGHT J, BERTIN D, et al. Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading [J]. Composite Structures, 2014, 110: 98–109. doi: 10.1016/j.compstruct.2013.11.016
    [17] AHMED S, GALAL K. Response of metallic sandwich panels to blast loads [J]. Journal of Structural Engineering, 2019, 145(12): 04019145. doi: 10.1061/(ASCE)ST.1943-541X.0002397
    [18] WANG M Z, GUO Y L, ZHU J S, et al. Sectional strength design of concrete-infilled double steel corrugated-plate walls with T-section [J]. Journal of Constructional Steel Research, 2019, 160: 23–44. doi: 10.1016/j.jcsr.2019.05.017
    [19] WANG M Z, GUO Y L, ZHU J S, et al. Flexural buckling of axially loaded concrete-infilled double steel corrugated-plate walls with T-section [J]. Journal of Constructional Steel Research, 2020, 166: 105940. doi: 10.1016/j.jcsr.2020.105940
    [20] 中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380—2015 [S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for steel plate shear walls: JGJ/T 380—2015 [S]. Beijing: China Architecture & Building Press, 2016.
    [21] 李忠献, 师燕超, 史祥生. 爆炸荷载作用下钢筋混凝土板破坏评定方法 [J]. 建筑结构学报, 2009, 30(6): 60–66. doi: 10.14006/j.jzjgxb.2009.06.008

    LI Z X, SHI Y C, SHI X S. Damage analysis and assessment of RC slabs under blast load [J]. Journal of Building Structures, 2009, 30(6): 60–66. doi: 10.14006/j.jzjgxb.2009.06.008
    [22] WANG Y H, LIEW J Y R, LEE S C. Theoretical models for axially restrained steel-concrete-steel sandwich panels under blast loading [J]. International Journal of Impact Engineering, 2015, 76: 221–231. doi: 10.1016/j.ijimpeng.2014.10.005
    [23] 武海军, 黄风雷, 张庆明, 等. ALE方法在钢筋混凝土侵彻数值模拟中的应用 [J]. 北京理工大学学报, 2002, 11(4): 405–408.

    WU H J, HUANG F L, ZHANG Q M, et al. Application of ALE method on the numerical simulation of reinforced concrete penetration [J]. Journal of Beijing Institute of Technology, 2002, 11(4): 405–408.
    [24] XIANG X M, LU G, MA G W, et al. Blast response of sandwich beams with thin-walled tubes as core [J]. Engineering Structures, 2016, 127: 40–48. doi: 10.1016/j.engstruct.2016.08.034
    [25] ZHANG X, DING Y, SHI Y C. Numerical simulation of far-field blast loads arising from large TNT equivalent explosives [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104432. doi: 10.1016/j.jlp.2021.104432
    [26] XIAO W F, ANDRAE M, STEYERER M, et al. Investigations of blast loads on a two-storied building with a gable roof: full-scale experiments and numerical study [J]. Journal of Building Engineering, 2021, 43: 103111. doi: 10.1016/j.jobe.2021.103111
    [27] XIAO Y, ZHU W Q, WU W C, et al. Damage modes and mechanism of RC arch slab under contact explosion at different locations [J]. International Journal of Impact Engineering, 2022, 170: 104360. doi: 10.1016/j.ijimpeng.2022.104360
    [28] WANG W, HUO Q, YANG J C, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast [J]. Defence Technology, 2022, 18(9): 1715–1726. doi: 10.1016/j.dt.2021.07.005
    [29] LIEW J Y R, WANG T Y. Novel steel-concrete-steel sandwich composite plates subject to impact and blast load [J]. Advances in Structural Engineering, 2011, 14(4): 673–687. doi: 10.1260/1369-4332.14.4.673
    [30] XU K, LU Y. Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading [J]. Computers & Structures, 2006, 84(5/6): 431–438. doi: 10.1016/j.compstruc.2005.09.029
    [31] HONG J, FANG Q, CHEN L, et al. Numerical predictions of concrete slabs under contact explosion by modified K&C material model [J]. Construction and Building Materials, 2017, 155: 1013–1024. doi: 10.1016/j.conbuildmat.2017.08.060
    [32] LI M H, XIA M T, ZONG Z H, et al. Residual axial capacity of concrete-filled double-skin steel tube columns under close-in blast loading [J]. Journal of Constructional Steel Research, 2023, 201: 107697. doi: 10.1016/j.jcsr.2022.107697
    [33] YU J, LIANG S L, REN Z P, et al. Structural behavior of steel-concrete-steel and steel-ultra-high-performance-concrete-steel composite panels subjected to near-field blast load [J]. Journal of Constructional Steel Research, 2023, 210: 108108. doi: 10.1016/j.jcsr.2023.108108
    [34] HENRYCH J. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 127.

    HENRYCH J. The dynamics of explosion and its use [M]. Translated by XIONG J G. Beijing: Science Press, 1987: 127.
  • 加载中
图(27) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  30
  • PDF下载量:  47
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-09-13
  • 网络出版日期:  2024-01-29
  • 刊出日期:  2024-02-05

目录

    /

    返回文章
    返回