Crack Propagation Law of Notch Blasting under Unidirectional Confining Pressure
-
摘要: 深部煤矿爆破是初始地应力场与爆炸荷载共同作用的结果,采用单向动-静组合加载试验平台和动态焦散线试验系统,在有机玻璃板上施加与炮孔切槽平行或垂直的单向围压作用,探究了初始应力场强度对爆生裂纹的扩展规律。结果表明:炮孔切槽能够有效控制初始应力场的分布范围,促进能量集中释放,提高定向爆破效果,同时爆炸动载荷与围压静载荷分别在炮孔近区和远区占主导作用;水平初始应力场增强了切槽尖端应力集中程度,促进了主裂纹的扩展,且随着应力场增强,促进效果越明显,同时抑制了次裂纹的产生;竖直初始应力场降低了切槽尖端的应力集中程度,抑制了裂纹扩展,并使裂纹扩展模式由Ⅰ型转变为Ⅰ-Ⅱ复合型,且随着应力场的增强,剪切断裂越明显,且裂纹沿最大主应力方向扩展。Abstract: The deep coal mine blasting is the combined action of the initial ground stress field and the explosion load. By using the unidirectional dynamic and static combined loading test platform and the dynamic caustic experimental system, the expansion law of the initial stress field intensity on the blasting crack is explored under the horizontal or vertical unidirectional confining pressure applied to the blasthole notch on the plexiglass plate. The test results show that the grooving of the blasthole can effectively control the distribution range of the initial stress field, promote the concentrated release of energy, and improve the directional blasting effect. At the same time, the dynamic effect of explosion and the static effect of confining pressure are dominant in the near and far areas of the blasthole, respectively. The horizontal initial stress field increases the stress concentration at the crack tip and promotes the growth of the main crack. With the increase of the stress field, the promotion effect is more obvious, and the occurrence of secondary cracks is inhibited. In contrast, the vertical initial stress field reduces the stress concentration at the notch tip, inhibits the crack propagation, and transforms the crack from type Ⅰ fracture to type Ⅰ-Ⅱ mixed fracture. With the increase of stress field, the shear fracture is more obvious, and the crack propagates along the direction of the maximum principal stress.
-
Key words:
- high ground stress /
- grooving blasting /
- dynamic caustics /
- crack propagation /
- high-speed camera
-
cp/(m·s−1) cs/(m·s−1) Ed/GPa $ \nu_{\mathrm{d}} $ c/(m2·N−1) 2320 1260 6.1 0.31 0.85×10−10 V/(L·kg−1) Q/(kJ·g−1) T/℃ D0/(m·s−1) 2320 5.9 4950 6600 表 3 模型应力加载试验方案
Table 3. Model stress loading test scheme
Scheme Confining pressure design/MPa Actual loading/MPa $ {\sigma }{_{\rm H}} $ $ {\sigma }{_{\rm V}} $ $ \mathrm{\sigma}{_{\mathrm{H}}} ' $ $ \mathrm{\sigma}{_{\mathrm{V}}} ' $ M-1 0 0 0 0 M-2 1 0 3.3 0 M-3 2 0 6.6 0 M-4 0 1 0 3.3 M-5 0 2 0 6.6 表 4 爆生主裂纹长度
Table 4. Blasting main crack length
Scheme Main crack No. Main crack length/mm Average length/mm M-1 A1 46.76 48.44 A2 50.11 M-2 B1 38.82 40.65 B2 42.47 M-3 C1 54.19 53.40 C2 52.61 M-4 D1 34.79 32.64 D2 30.49 M-5 E1 31.54 29.64 E2 27.74 -
[1] LU W, CHEN M, GENG X, et al. A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations [J]. Tunnelling and Underground Space Technology, 2012, 29: 31–39. doi: 10.1016/j.tust.2011.12.008 [2] FOURNEY W L, BARKER D B, HOLLOWAY D C. Model studies of explosive well stimulation techniques [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(2): 113–127. [3] 张志呈. 切槽爆破参数的研究与生产实践 [J]. 岩土工程学报, 1996(2): 104–108.ZHANG Z C. Research and production practice of grooving blasting parameters [J]. Chinese Journal of Geotechnical Engineering, 1996(2): 104–108. [4] 李清, 王平虎, 杨仁树, 等. 切槽孔爆破动态力学特征的动焦散线实验 [J]. 爆炸与冲击, 2009, 29(4): 413–418. doi: 10.11883/1001-1455(2009)04-0413-06LI Q, WANG P H, YANG R S, et al. Experimental investigation on dynamic mechanical behaviors of cracks induced by V-notch borehole blasting with dynamic caustics [J]. Explosion and Shock Waves, 2009, 29(4): 413–418. doi: 10.11883/1001-1455(2009)04-0413-06 [5] 岳中文, 邱鹏, 杨仁树, 等. 切槽炮孔偏心装药爆源近区裂纹动态力学特征实验研究 [J]. 岩石力学与工程学报, 2017, 36(Suppl 2): 3792–3798.YUE Z W, QIU P, YANG R S, et al. Experimental study on crack dynamic mechanical characteristic near blasting source of grooved borehole with eccentric decouple charge [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Suppl 2): 3792–3798. [6] 杨仁树, 丁晨曦, 杨立云. 高应力状态下穿过层理爆破致裂的动态行为研究 [J]. 岩石力学与工程学报, 2018, 37(4): 801–808.YANG R S, DING C X, YANG L Y. Blast cracking of borehole-crossed bedding under high stress condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 801–808. [7] LI Z, HU Y, WANG G, et al. Study on cyclic blasting failure characteristics and cumulative damage evolution law of tunnel rock mass under initial in-situ stress [J]. Engineering Failure Analysis, 2023, 150: 107310. doi: 10.1016/j.engfailanal.2023.107310 [8] 葛进进, 徐颖, 程琳, 等. 深部岩石爆破主裂纹扩展方向与地应力的关系 [J]. 振动与冲击, 2023, 42(4): 54–64.GE J J, XU Y, CHENG L, et al. Relationship between in-situ stress and paopagation direction of main cracks induced by blasting [J]. Journal of Vibration and Shock, 2023, 42(4): 54–64. [9] 杨立云, 马佳辉, 王学东, 等. 压应力场中爆生裂纹分布与扩展特征实验分析 [J]. 爆炸与冲击, 2017, 37(2): 262–268. doi: 10.11883/1001-1455(2017)02-0262-07YANG L Y, MA J H, WANG X D, et al. Experimental study on blasting crack initiation and propagation behavior in compression stress field [J]. Explosion and Shock Waves, 2017, 37(2): 262–268. doi: 10.11883/1001-1455(2017)02-0262-07 [10] 杨仁树, 岳中文, 肖同社, 等. 节理介质断裂控制爆破裂纹扩展的动焦散试验研究 [J]. 岩石力学与工程学报, 2008, 27(2): 244–250.YANG R S, YUE Z W, XIAO T S, et al. Dynamic caustics experiment on crack propagation of iointed medium fracture with controlled blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 244–250. [11] 岳中文, 郭洋, 王煦. 切槽孔爆炸载荷下裂纹扩展行为的实验研究 [J]. 岩石力学与工程学报, 2015, 34(10): 2018–2026. doi: 10.13722/j.cnki.jrme.2015.0497YUE Z W, GUO Y, WANG X. Experimental study of crack propagation under blasting load in notched boreholes [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2018–2026. doi: 10.13722/j.cnki.jrme.2015.0497 [12] 岳中文, 杨仁树, 郭东明, 等. 爆炸应力波作用下缺陷介质裂纹扩展的动态分析 [J]. 岩土力学, 2009, 30(4): 949–954. doi: 10.16285/j.rsm.2009.04.004YUE Z W, YANG R S, GUO D M, et al. Dynamic analysis of crack propagation in media containing flaws under the explosive stress wave [J]. Rock and Soil Mechanics, 2009, 30(4): 949–954. doi: 10.16285/j.rsm.2009.04.004 [13] YUE Z W, YANG L Y, WANG Y B. Experimental study of crack propagation in polymethyl methacrylate material with double holes under the directional controlled blasting [J]. Fatigue & Fracture of Engineering Materials and Structures, 2013, 36(8): 827–833. [14] 劳允亮. 起爆药化学与工艺学 [M]. 北京: 北京理工大学出版社, 1997: 300−305.LAO Y L. Primary explosive chemistry and technology [M]. Beijing: Beijing Institute of Technology Press, 1997: 300−305. [15] 杜云贵, 张志呈, 李通林. 切槽爆破中V形切槽产生的力学效应研究 [J]. 爆炸与冲击, 1991, 11(1): 26–30.DU Y G, ZHANG Z C, LI T L, et al. Studies on the mechanical effects produced by the V-shaped notch borehole blasting [J]. Explosion and Shock Waves, 1991, 11(1): 26–30. [16] 宗琦. 岩石炮孔预切槽爆破断裂成缝机理研究 [J]. 岩土工程学报, 1998, 20(1): 30–33.ZONG Q. Investigations into mechanism of crack formation for grooved hole-well blasting [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 30–33. [17] 杨仁树, 杨国梁, 高祥涛. 定向断裂控制爆破理论与实践[M]. 北京: 科学出版社, 2017: 215–222.YANG R S, YANG G L, GAO X T. Theory and practice of directional fracture controlled blasting [M]. Beijing: Science Press, 2017: 215–222. [18] 杨立云, 王青成, 丁晨曦, 等. 深部岩体中切槽爆破机理实验分析 [J]. 振动与冲击, 2020, 39(2): 40–46. doi: 10.13465/j.cnki.jvs.2020.02.006YANG L Y, WANG Q C, DING C X, et al. Experimental analysis on the mechanism of slotting blasting in deep rock mass [J]. Journal of Vibration and Shock, 2020, 39(2): 40–46. doi: 10.13465/j.cnki.jvs.2020.02.006