单向围压下切槽爆破裂纹扩展规律研究

吴延梦 李洪伟 苏洪 梁昊 黄昕旭 刘涛 储亚坤

吴延梦, 李洪伟, 苏洪, 梁昊, 黄昕旭, 刘涛, 储亚坤. 单向围压下切槽爆破裂纹扩展规律研究[J]. 高压物理学报, 2023, 37(6): 064102. doi: 10.11858/gywlxb.20230716
引用本文: 吴延梦, 李洪伟, 苏洪, 梁昊, 黄昕旭, 刘涛, 储亚坤. 单向围压下切槽爆破裂纹扩展规律研究[J]. 高压物理学报, 2023, 37(6): 064102. doi: 10.11858/gywlxb.20230716
WU Yanmeng, LI Hongwei, SU Hong, LIANG Hao, HUANG Xinxu, LIU Tao, CHU Yakun. Crack Propagation Law of Notch Blasting under Unidirectional Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 064102. doi: 10.11858/gywlxb.20230716
Citation: WU Yanmeng, LI Hongwei, SU Hong, LIANG Hao, HUANG Xinxu, LIU Tao, CHU Yakun. Crack Propagation Law of Notch Blasting under Unidirectional Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 064102. doi: 10.11858/gywlxb.20230716

单向围压下切槽爆破裂纹扩展规律研究

doi: 10.11858/gywlxb.20230716
基金项目: 国家自然科学基金(52104074)
详细信息
    作者简介:

    吴延梦(1999-),男,硕士研究生,主要从事岩石破碎理论与技术研究.E-mail:1904477218@qq.com

    通讯作者:

    李洪伟(1979-),男,教授,硕士生导师,主要从事控制爆破技术研究. E-mail:lihw@aust.edu.cn

  • 中图分类号: O346.1

Crack Propagation Law of Notch Blasting under Unidirectional Confining Pressure

  • 摘要: 深部煤矿爆破是初始地应力场与爆炸荷载共同作用的结果,采用单向动-静组合加载试验平台和动态焦散线试验系统,在有机玻璃板上施加与炮孔切槽平行或垂直的单向围压作用,探究了初始应力场强度对爆生裂纹的扩展规律。结果表明:炮孔切槽能够有效控制初始应力场的分布范围,促进能量集中释放,提高定向爆破效果,同时爆炸动载荷与围压静载荷分别在炮孔近区和远区占主导作用;水平初始应力场增强了切槽尖端应力集中程度,促进了主裂纹的扩展,且随着应力场增强,促进效果越明显,同时抑制了次裂纹的产生;竖直初始应力场降低了切槽尖端的应力集中程度,抑制了裂纹扩展,并使裂纹扩展模式由Ⅰ型转变为Ⅰ-Ⅱ复合型,且随着应力场的增强,剪切断裂越明显,且裂纹沿最大主应力方向扩展。

     

  • 图  焦散线的成像原理

    Figure  1.  Imaging principle of caustics

    图  动焦散试验系统示意图

    Figure  2.  Schematic diagram of dynamic caustics test system

    图  切槽爆破试件

    Figure  3.  Cutting blasting specimen

    图  模型应力加载示意图

    Figure  4.  Schematic diagram of model stress loading

    图  单向荷载下炮孔周围的焦散线

    Figure  5.  Caustics around the borehole under unidirectional load

    图  试件爆后的裂纹分布

    Figure  6.  Crack distribution of specimen after explosion

    图  试件破坏过程的动态焦散线系列图像

    Figure  7.  Dynamic caustic series diagram of specimen failure process

    图  爆生主裂纹扩展速度随时间的变化

    Figure  8.  Variations of the growth rate of the main crack caused by explosion with time

    图  爆生主裂纹动态应力强度因子随时间的变化

    Figure  9.  Variations of the dynamic stress intensity factor of the main crack caused by explosion with time

    图  10  Ⅰ-Ⅱ复合型动态焦散斑图像

    Figure  10.  Ⅰ-Ⅱ compound dynamic focal speckle image

    表  1  PMMA的力学性能[13]

    Table  1.   Mechanical properties of PMMA[13]

    cp/(m·s−1) cs/(m·s−1) Ed/GPa $ \nu_{\mathrm{d}} $ c/(m2·N−1)
    2320 1260 6.1 0.31 0.85×10−10
    下载: 导出CSV

    表  2  DDNP的爆炸性能[14]

    Table  2.   Explosion performance of DDNP[14]

    V/(L·kg−1) Q/(kJ·g−1) T/℃ D0/(m·s−1)
    2320 5.9 4950 6600
    下载: 导出CSV

    表  3  模型应力加载试验方案

    Table  3.   Model stress loading test scheme

    Scheme Confining pressure design/MPa Actual loading/MPa
    $ {\sigma }{_{\rm H}} $ $ {\sigma }{_{\rm V}} $ $ \mathrm{\sigma}{_{\mathrm{H}}} ' $ $ \mathrm{\sigma}{_{\mathrm{V}}} ' $
    M-1 0 0 0 0
    M-2 1 0 3.3 0
    M-3 2 0 6.6 0
    M-4 0 1 0 3.3
    M-5 0 2 0 6.6
    下载: 导出CSV

    表  4  爆生主裂纹长度

    Table  4.   Blasting main crack length

    SchemeMain crack No.Main crack length/mmAverage length/mm
    M-1A146.7648.44
    A250.11
    M-2B138.8240.65
    B242.47
    M-3C154.1953.40
    C252.61
    M-4D134.7932.64
    D230.49
    M-5E131.5429.64
    E227.74
    下载: 导出CSV
  • [1] LU W, CHEN M, GENG X, et al. A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations [J]. Tunnelling and Underground Space Technology, 2012, 29: 31–39. doi: 10.1016/j.tust.2011.12.008
    [2] FOURNEY W L, BARKER D B, HOLLOWAY D C. Model studies of explosive well stimulation techniques [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(2): 113–127.
    [3] 张志呈. 切槽爆破参数的研究与生产实践 [J]. 岩土工程学报, 1996(2): 104–108.

    ZHANG Z C. Research and production practice of grooving blasting parameters [J]. Chinese Journal of Geotechnical Engineering, 1996(2): 104–108.
    [4] 李清, 王平虎, 杨仁树, 等. 切槽孔爆破动态力学特征的动焦散线实验 [J]. 爆炸与冲击, 2009, 29(4): 413–418. doi: 10.11883/1001-1455(2009)04-0413-06

    LI Q, WANG P H, YANG R S, et al. Experimental investigation on dynamic mechanical behaviors of cracks induced by V-notch borehole blasting with dynamic caustics [J]. Explosion and Shock Waves, 2009, 29(4): 413–418. doi: 10.11883/1001-1455(2009)04-0413-06
    [5] 岳中文, 邱鹏, 杨仁树, 等. 切槽炮孔偏心装药爆源近区裂纹动态力学特征实验研究 [J]. 岩石力学与工程学报, 2017, 36(Suppl 2): 3792–3798.

    YUE Z W, QIU P, YANG R S, et al. Experimental study on crack dynamic mechanical characteristic near blasting source of grooved borehole with eccentric decouple charge [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Suppl 2): 3792–3798.
    [6] 杨仁树, 丁晨曦, 杨立云. 高应力状态下穿过层理爆破致裂的动态行为研究 [J]. 岩石力学与工程学报, 2018, 37(4): 801–808.

    YANG R S, DING C X, YANG L Y. Blast cracking of borehole-crossed bedding under high stress condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 801–808.
    [7] LI Z, HU Y, WANG G, et al. Study on cyclic blasting failure characteristics and cumulative damage evolution law of tunnel rock mass under initial in-situ stress [J]. Engineering Failure Analysis, 2023, 150: 107310. doi: 10.1016/j.engfailanal.2023.107310
    [8] 葛进进, 徐颖, 程琳, 等. 深部岩石爆破主裂纹扩展方向与地应力的关系 [J]. 振动与冲击, 2023, 42(4): 54–64.

    GE J J, XU Y, CHENG L, et al. Relationship between in-situ stress and paopagation direction of main cracks induced by blasting [J]. Journal of Vibration and Shock, 2023, 42(4): 54–64.
    [9] 杨立云, 马佳辉, 王学东, 等. 压应力场中爆生裂纹分布与扩展特征实验分析 [J]. 爆炸与冲击, 2017, 37(2): 262–268. doi: 10.11883/1001-1455(2017)02-0262-07

    YANG L Y, MA J H, WANG X D, et al. Experimental study on blasting crack initiation and propagation behavior in compression stress field [J]. Explosion and Shock Waves, 2017, 37(2): 262–268. doi: 10.11883/1001-1455(2017)02-0262-07
    [10] 杨仁树, 岳中文, 肖同社, 等. 节理介质断裂控制爆破裂纹扩展的动焦散试验研究 [J]. 岩石力学与工程学报, 2008, 27(2): 244–250.

    YANG R S, YUE Z W, XIAO T S, et al. Dynamic caustics experiment on crack propagation of iointed medium fracture with controlled blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 244–250.
    [11] 岳中文, 郭洋, 王煦. 切槽孔爆炸载荷下裂纹扩展行为的实验研究 [J]. 岩石力学与工程学报, 2015, 34(10): 2018–2026. doi: 10.13722/j.cnki.jrme.2015.0497

    YUE Z W, GUO Y, WANG X. Experimental study of crack propagation under blasting load in notched boreholes [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2018–2026. doi: 10.13722/j.cnki.jrme.2015.0497
    [12] 岳中文, 杨仁树, 郭东明, 等. 爆炸应力波作用下缺陷介质裂纹扩展的动态分析 [J]. 岩土力学, 2009, 30(4): 949–954. doi: 10.16285/j.rsm.2009.04.004

    YUE Z W, YANG R S, GUO D M, et al. Dynamic analysis of crack propagation in media containing flaws under the explosive stress wave [J]. Rock and Soil Mechanics, 2009, 30(4): 949–954. doi: 10.16285/j.rsm.2009.04.004
    [13] YUE Z W, YANG L Y, WANG Y B. Experimental study of crack propagation in polymethyl methacrylate material with double holes under the directional controlled blasting [J]. Fatigue & Fracture of Engineering Materials and Structures, 2013, 36(8): 827–833.
    [14] 劳允亮. 起爆药化学与工艺学 [M]. 北京: 北京理工大学出版社, 1997: 300−305.

    LAO Y L. Primary explosive chemistry and technology [M]. Beijing: Beijing Institute of Technology Press, 1997: 300−305.
    [15] 杜云贵, 张志呈, 李通林. 切槽爆破中V形切槽产生的力学效应研究 [J]. 爆炸与冲击, 1991, 11(1): 26–30.

    DU Y G, ZHANG Z C, LI T L, et al. Studies on the mechanical effects produced by the V-shaped notch borehole blasting [J]. Explosion and Shock Waves, 1991, 11(1): 26–30.
    [16] 宗琦. 岩石炮孔预切槽爆破断裂成缝机理研究 [J]. 岩土工程学报, 1998, 20(1): 30–33.

    ZONG Q. Investigations into mechanism of crack formation for grooved hole-well blasting [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 30–33.
    [17] 杨仁树, 杨国梁, 高祥涛. 定向断裂控制爆破理论与实践[M]. 北京: 科学出版社, 2017: 215–222.

    YANG R S, YANG G L, GAO X T. Theory and practice of directional fracture controlled blasting [M]. Beijing: Science Press, 2017: 215–222.
    [18] 杨立云, 王青成, 丁晨曦, 等. 深部岩体中切槽爆破机理实验分析 [J]. 振动与冲击, 2020, 39(2): 40–46. doi: 10.13465/j.cnki.jvs.2020.02.006

    YANG L Y, WANG Q C, DING C X, et al. Experimental analysis on the mechanism of slotting blasting in deep rock mass [J]. Journal of Vibration and Shock, 2020, 39(2): 40–46. doi: 10.13465/j.cnki.jvs.2020.02.006
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  44
  • PDF下载量:  24
出版历程
  • 收稿日期:  2023-08-14
  • 修回日期:  2023-09-02
  • 网络出版日期:  2023-12-01
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回