[1] |
GUENTHER A H, WUNSCH D C, SOAPES T D, et al. Acceleration of thin plates by exploding foil techniques [M]//CHACE W G, MOORE H K. Exploding Wires. Boston: Springer, 1962: 279–298.
|
[2] |
KELLER D V, PENNING J R JR. Exploding foil-the production of plane shock waves and the acceleration of thin plates [M]//CHACE W G, MOORE H K. Exploding Wires. Boston: Springer, 1962: 263–277.
|
[3] |
罗斌强, 张旭平, 郝龙, 等. 7 km/s以上超高速发射技术研究进展 [J]. 爆炸与冲击, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307LUO B Q, ZHANG X P, HAO L, et al. Advances on the techniques of ultrahigh-velocity launch above 7 km/s [J]. Explosion and Shock Waves, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307
|
[4] |
WANG G J, HE J, ZHAO J H, et al. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments [J]. Review of Scientific Instruments, 2011, 82(9): 095105. doi: 10.1063/1.3633773
|
[5] |
CUTTING J L, LEE R S, HONGIN R I. Slapper detonator perfonnance: UCRL-IDl 17787 [R]. USA: Lawrence Livermore National Labratory, 1994.
|
[6] |
王桂吉, 蒋吉昊, 邓向阳, 等. 电爆炸驱动小尺寸冲击片实验与数值计算研究 [J]. 兵工学报, 2008, 29(6): 657–661. doi: 10.3321/j.issn:1000-1093.2008.06.004WANG G J, JIANG J H, DENG X Y, et al. Experiments and numerical simulation of small-scale slapper driven by electrical explosion [J]. Acta Armamentarii, 2008, 29(6): 657–661. doi: 10.3321/j.issn:1000-1093.2008.06.004
|
[7] |
张玉若, 梁车平, 程涛, 等. 爆炸箔换能元失效模式分析 [J]. 火工品, 2018(4): 5–7. doi: 10.3969/j.issn.1003-1480.2018.04.002ZHANG Y R, LIANG C P, CHENG T, et al. Experimental study on failure mode of exploding foil [J]. Initiators & Pyrotechnics, 2018(4): 5–7. doi: 10.3969/j.issn.1003-1480.2018.04.002
|
[8] |
秦国圣, 张蕊, 王寅, 等. 多点阵列冲击片雷管仿真与试验研究 [J]. 兵工学报, 2016, 37(Suppl 2): 81–85.QIN G S, ZHANG R, WANG Y, et al. Numerical simulation and experimental study of multi-point array EFI [J]. Acta Armamentarii, 2016, 37(Suppl 2): 81–85.
|
[9] |
先明春, 谢浚尧, 王成玲, 等. 考虑压缩空气边界的爆炸箔起爆器飞片运动模型 [J]. 爆破器材, 2023, 52(2): 1–7. doi: 10.3969/j.issn.1001-8352.2023.02.001XIAN M C, XIE J Y, WANG C L, et al. A Motion model of flyer in exploding foil initiator considering compressed air boundary [J]. Explosive Materials, 2023, 52(2): 1–7. doi: 10.3969/j.issn.1001-8352.2023.02.001
|
[10] |
侯新朋, 彭志凌, 宋进宇, 等. 桥区结构对爆炸箔起爆器发火性能的影响 [J]. 兵器装备工程学报, 2022, 43(5): 103–107, 113. doi: 10.11809/bqzbgcxb2022.05.017HOU X P, PENG Z L, SONG J Y, et al. Influence of bridge structure on ignition performance of exploding foil detonator [J]. Journal of Ordnance Equipment Engineering, 2022, 43(5): 103–107, 113. doi: 10.11809/bqzbgcxb2022.05.017
|
[11] |
LOGAN J D, LEE R S, WEINGART R C, et al. Calculation of heating and burst phenomena in electrically exploded foils [J]. Journal of Applied Physics, 1977, 48(2): 621–628. doi: 10.1063/1.323646
|
[12] |
董玉斌, 李献文, 董维申. 电加热金属箔爆炸的有限元法计算 [J]. 爆炸与冲击, 1981, 1(1): 28–36.DONG Y B, LI X W, DONG W S. A finite-element method calculation of electrically heated bursting metallic foils [J]. Explosion and Shock Waves, 1981, 1(1): 28–36.
|
[13] |
OSHER J E, BARNES G, CHAU H H, et al. Operating characteristics and modeling of the LLNL 100-kV electric gun [J]. IEEE Transactions on Plasma Science, 1989, 17(3): 392–402. doi: 10.1109/27.32247
|
[14] |
SAXENA A K, KAUSHIK T C, GUPTA S C. Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators [J]. Review of Scientific Instruments, 2010, 81(3): 033508. doi: 10.1063/1.3327818
|
[15] |
罗斌强. 金属箔电爆炸及其在冲击动力学中的应用 [D]. 合肥: 中国科学技术大学, 2012.LUO B Q. Electrical explosion of metallic foils and its applications in dynamic mechanics [D]. Hefei: University of Science and Technology of China, 2012.
|
[16] |
贺佳, 罗斌强, 庞树财, 等. 微型爆炸箔电爆炸过程的数值模拟 [J]. 高压物理学报, 2017, 31(1): 21–26.HE J, LUO B Q, PANG S C, et al. Numerical simulation of electrical explosion of micro-exploding foil [J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 21–26.
|
[17] |
LUO B Q, SUN C W, ZHAO J H, et al. Unified numerical simulation of metallic foil electrical explosion and its applications [J]. IEEE Transactions on Plasma Science, 2013, 41(1): 49–57. doi: 10.1109/TPS.2012.2227827
|
[18] |
NEAL W, GARASI C. High fidelity studies of exploding foil initiator bridges, part 3: ALEGRA MHD simulations [J]. AIP Conference Proceedings, 2017, 1793: 080008. doi: 10.1063/1.4971614
|
[19] |
苏谦, 褚恩义, 解瑞珍, 等. 九点爆炸箔电爆炸性能试验与仿真模拟 [J]. 火工品, 2019(5): 15–18. doi: 10.3969/j.issn.1003-1480.2019.05.004SU Q, CHU E Y, XIE R Z, et al. Experimental study and simulation on the electrical explosion performance of nine-point explosive foil [J]. Initiators & Pyrotechnics, 2019(5): 15–18. doi: 10.3969/j.issn.1003-1480.2019.05.004
|
[20] |
钱石川, 甘强, 任志伟, 等. 爆炸箔起爆器发火阈值影响因素的数值模拟 [J]. 含能材料, 2018, 26(3): 248–254. doi: 10.11943/j.issn.1006-9941.2018.03.008QIAN S C, GAN Q, REN Z W, et al. Numerical simulation of the factors affecting the ignition threshold of an exploding foil initiator [J]. Chinese Journal of Energetic Materials, 2018, 26(3): 248–254. doi: 10.11943/j.issn.1006-9941.2018.03.008
|
[21] |
伍俊英, 于红新, 汪龙, 等. 金属桥箔水中电爆炸流场数值模拟研究 [J]. 兵工学报, 2016, 37(Suppl 1): 51–56.WU J Y, YU H X, WANG L, et al. Numerical simulation of electric exploding of metal bridge foil in water [J]. Acta Armamentarii, 2016, 37(Suppl 1): 51–56.
|
[22] |
王亮, 邹苑楠, 蒋小华, 等. 短脉冲电流作用下铜微桥箔的电热分析 [J]. 含能材料, 2013, 21(4): 500–505. doi: 10.3969/j.issn.1006-9941.2013.04.019WANG L, ZOU Y N, JIANG X H, et al. Thermal-electric analysis of small-scale copper bridge foils excited by short pulse currents [J]. Chinese Journal of Energetic Materials, 2013, 21(4): 500–505. doi: 10.3969/j.issn.1006-9941.2013.04.019
|
[23] |
曹始发, 黄寅生. 小飞片冲击起爆HNS-IV的临界速度的研究 [J]. 计算机仿真, 2016, 33(4): 23–26, 149. doi: 10.3969/j.issn.1006-9348.2016.04.006CAO S F, HUANG Y S. Research on threshold velocity of shock initiation of HNS-IV by small flyer [J]. Computer Simulation, 2016, 33(4): 23–26, 149. doi: 10.3969/j.issn.1006-9348.2016.04.006
|