高压下碲基双钙钛矿Cs2TeBr6的结构及光学性质

吴学仟 王玲瑞 袁亦方 马良 郭海中

吴学仟, 王玲瑞, 袁亦方, 马良, 郭海中. 高压下碲基双钙钛矿Cs2TeBr6的结构及光学性质[J]. 高压物理学报, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708
引用本文: 吴学仟, 王玲瑞, 袁亦方, 马良, 郭海中. 高压下碲基双钙钛矿Cs2TeBr6的结构及光学性质[J]. 高压物理学报, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708
WU Xueqian, WANG Lingrui, YUAN Yifang, MA Liang, GUO Haizhong. Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708
Citation: WU Xueqian, WANG Lingrui, YUAN Yifang, MA Liang, GUO Haizhong. Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708

高压下碲基双钙钛矿Cs2TeBr6的结构及光学性质

doi: 10.11858/gywlxb.20230708
基金项目: 国家自然科学基金(U2032127,11904322,12204420,12247177)
详细信息
    作者简介:

    吴学仟(1999-),男,硕士研究生,主要从事发光材料的高压物性研究. E-mail:wuxueqian@gs.zzu.edu.cn

    通讯作者:

    王玲瑞(1989-),女,博士,副教授,主要从事高压下凝聚态物质结构与性质研究. E-mail:wanglr@zzu.edu.cn

    马 良(1995-),男,博士,副研究员,主要从事高压下功能材料的设计与合成研究. E-mail:ml9533@zzu.edu.cn

  • 中图分类号: O521.2

Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure

  • 摘要: 碲基双钙钛矿材料具有光电特性良好、带隙可调、环境友好等优点,已成为一种应用潜力巨大的光吸收材料。为进一步调控碲基双钙钛矿材料的光学性能,选取了一种典型的碲基双钙钛矿Cs2TeBr6,利用金刚石对顶砧高压装置及多种原位高压测量手段,对其结构与性能的关系进行了深入研究。实验结果表明,在0~51.0 GPa压力范围内,Cs2TeBr6的晶体结构发生了从立方相($Fm \overline 3 m$)到四方相(P4/mnc)的结构相变,相变由高压下八面体[TeBr6]4−的倾斜变形所致。同时发现,高压下Cs2TeBr6的带隙随压力的升高而减小,并在14.0 GPa附近出现拐点,拐点的出现意味着结构相变开始。研究结果有助于建立Cs2TeBr6的晶体结构与光学性质之间的关系,为调控碲基钙钛矿的物性提供非常有价值的参考。

     

  • 图  Cs2TeBr6在常压下的晶体结构(a)及其粉末XRD数据与PDF标准卡片的对比 (b)

    Figure  1.  Crystal structure (a) and XRD data of Cs2TeBr6 under ambient pressure compared with PDF card (b)

    图  Cs2TeBr6的XRD谱随压力的变化

    Figure  2.  XRD patterns of Cs2TeBr6 as a function of pressure

    图  Cs2TeBr6在0.7和29.9 GPa下的XRD谱Rietveld精修结果

    Figure  3.  Rietveld refinement XRD patterns of Cs2TeBr6 at 0.7 and 29.9 GPa

    图  高压下Cs2TeBr6的晶格常数(a)和晶胞体积(b)随压力的变化曲线

    Figure  4.  High-pressure evolution of the lattice parameters (a) and cell volume (b) of Cs2TeBr6

    图  Cs2TeBr6的高压拉曼谱(a)、拉曼位移随压力的变化(b)以及拉曼振动模式(c)

    Figure  5.  Raman spectra (a), Raman shift as a function of pressure (b) and Raman modes (c) of Cs2TeBr6

    图  Cs2TeBr6在压力作用下的吸收光谱变化(a)、常压下的带隙(b)以及带隙与压力的变化关系(c)

    Figure  6.  Absorption spectra of Cs2TeBr6 under pressure (a), the band gap at ambient pressure (b) and the relationship between band gap and pressure (c)

  • [1] FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties [J]. Nature Reviews Materials, 2019, 4(3): 169–188. doi: 10.1038/s41578-019-0080-9
    [2] SU P D, LIU Y, ZHANG J K, et al. Pb-based perovskite solar cells and the underlying pollution behind clean energy: dynamic leaching of toxic substances from discarded perovskite solar cells [J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 2812–2817. doi: 10.1021/acs.jpclett.0c00503
    [3] GHOSH S, SHANKAR H, KAR P. Recent developments of lead-free halide double perovskites: a new superstar in the optoelectronic field [J]. Materials Advances, 2022, 3(9): 3742–3765. doi: 10.1039/D2MA00071G
    [4] LEE B, STOUMPOS C C, ZHOU N J, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor [J]. Journal of the American Chemical Society, 2014, 136(43): 15379–15385. doi: 10.1021/ja508464w
    [5] ZHAO X G, YANG J H, FU Y H, et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation [J]. Journal of the American Chemical Society, 2017, 139(7): 2630–2638. doi: 10.1021/jacs.6b09645
    [6] HAMDAN M, CHANDIRAN A K. Cs2PtI6 halide perovskite is stable to air, moisture, and extreme pH: application to photoelectrochemical solar water oxidation [J]. Angewandte Chemie International Edition, 2020, 59(37): 16033–16038. doi: 10.1002/anie.202000175
    [7] PENG H P, XU L Y, SHENG Y L, et al. Highly conductive ligand-free Cs2PtBr6 perovskite nanocrystals with a narrow bandgap and efficient photoelectrochemical performance [J]. Small, 2021, 17(38): 2102149. doi: 10.1002/smll.202102149
    [8] CHENG P F, ZHENG D Y, FENG L, et al. Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission [J]. Journal of Energy Chemistry, 2022, 65: 600–604. doi: 10.1016/j.jechem.2021.06.033
    [9] LIU S P, YANG B, CHEN J S, et al. Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals [J]. Laser & Photonics Reviews, 2022, 16(2): 2100439. doi: 10.1002/LPOR.202100439
    [10] WANG Z Y, CHEN Y, ZHANG C Y, et al. Electronic structure and optical properties of vacancy-ordered double perovskites Cs2PdBr x Cl6– x by first-principles calculation [J]. The Journal of Physical Chemistry C, 2020, 124(24): 13310–13315. doi: 10.1021/acs.jpcc.0c00137
    [11] SAKAI N, HAGHIGHIRAD A A, FILIP M R, et al. Solution-processed cesium hexabromopalladate (Ⅳ), Cs2PdBr6, for optoelectronic applications [J]. Journal of the American Chemical Society, 2017, 139(17): 6030–6033. doi: 10.1021/jacs.6b13258
    [12] MAHMOOD Q, HASSAN M, YOUSAF N, et al. Study of lead-free double perovskites halides Cs2TiCl6, and Cs2TiBr6 for optoelectronics, and thermoelectric applications [J]. Materials Science in Semiconductor Processing, 2022, 137: 106180. doi: 10.1016/j.mssp.2021.106180
    [13] MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nature Communications, 2018, 9(1): 4506. doi: 10.1038/s41467-018-06840-8
    [14] GUO S H, LI Y H, MAO Y H, et al. Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating [J]. Science Advances, 2022, 8(44): eadd1984. doi: 10.1126/sciadv.add1984
    [15] WANG J X, WANG L R, LI Y Q, et al. Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6 [J]. Advanced Science, 2022, 9(28): 2203442. doi: 10.1002/advs.202203442
    [16] WANG J X, WANG L R, WANG F, et al. Pressure-induced bandgap engineering of lead-free halide double perovskite (NH4)2SnBr6 [J]. Physical Chemistry Chemical Physics, 2021, 23(35): 19308–19312. doi: 10.1039/D1CP03267D
    [17] WANG L R, YAO P P, WANG F, et al. Pressure-induced structural evolution and bandgap optimization of lead-free halide double perovskite (NH4)2SeBr6 [J]. Advanced Science, 2020, 7(6): 1902900. doi: 10.1002/advs.201902900
    [18] 姚盼盼, 王玲瑞, 王家祥, 等. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质 [J]. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988

    YAO P P, WANG L R, WANG J X, et al. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure [J]. Acta Physica Sinica, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [19] ABRIEL W, ZEHNDER E J. Vibronic coupling and dynamically distorted structures in hexahalogenotellurates (Ⅳ): low temperature X-ray diffraction (300–160 K) and FTIR-spectroscopic (300–5 K) results [J]. Zeitschrift für Naturforschung B, 2014, 42(10): 1273–1281. doi: 10.1515/znb-1987-1012
    [20] BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 °K [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B3): 1257–1268. doi: 10.1029/JB083iB03p01257
    [21] FOLGUERAS M C, JIN J B, GAO M Y, et al. Lattice dynamics and optoelectronic properties of vacancy-ordered double perovskite Cs2TeX6 (X =Cl, Br, I) single crystals [J]. The Journal of Physical Chemistry C, 2021, 125(45): 25126–25139. doi: 10.1021/acs.jpcc.1c08332
    [22] 郭宏伟, 刘然, 王玲瑞, 等. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究 [J]. 物理学报, 2017, 63(3): 030701. doi: 10.7498/aps.66.030701

    GUO H W, LIU R, WANG L R, et al. High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3 [J]. Acta Physica Sinica, 2017, 63(3): 030701. doi: 10.7498/aps.66.030701
    [23] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium [J]. Physica Status Solidi (B), 1966, 15(2): 627–637. doi: 10.1002/pssb.19660150224
    [24] MUREFAH M A, MALAK A A, BOUZGARROU S, et al. Study of optoelectronic and thermoelectric properties of double perovskites for renewable energy [J]. Physica Scripta, 2021, 96: 125828. doi: 10.1088/1402-4896/ac297a
  • 加载中
图(6)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  79
  • PDF下载量:  132
出版历程
  • 收稿日期:  2023-08-10
  • 修回日期:  2023-08-28
  • 网络出版日期:  2023-10-09
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回