桩锤作用下岸坡悬挂钢板桩的动力响应特性

任俊刚 高永胜 赵博文 蒋楠

任俊刚, 高永胜, 赵博文, 蒋楠. 桩锤作用下岸坡悬挂钢板桩的动力响应特性[J]. 高压物理学报, 2023, 37(6): 064103. doi: 10.11858/gywlxb.20230704
引用本文: 任俊刚, 高永胜, 赵博文, 蒋楠. 桩锤作用下岸坡悬挂钢板桩的动力响应特性[J]. 高压物理学报, 2023, 37(6): 064103. doi: 10.11858/gywlxb.20230704
REN Jungang, GAO Yongsheng, ZHAO Bowen, JIANG Nan. Dynamic Response Characteristics of Double-Row Suspended Steel Sheet Piles on Nearshore Slope under the Impact of Pile Hammer[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 064103. doi: 10.11858/gywlxb.20230704
Citation: REN Jungang, GAO Yongsheng, ZHAO Bowen, JIANG Nan. Dynamic Response Characteristics of Double-Row Suspended Steel Sheet Piles on Nearshore Slope under the Impact of Pile Hammer[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 064103. doi: 10.11858/gywlxb.20230704

桩锤作用下岸坡悬挂钢板桩的动力响应特性

doi: 10.11858/gywlxb.20230704
详细信息
    作者简介:

    任俊刚(1979-),男,高级工程师,主要从事能源类工程土建结构研究. E-mail:zbwmail@icloud.com

    通讯作者:

    高永胜(1991-),男,工程师,主要从事电气工程及自动化研究. E-mail:1202120576@cug.edu.cn

  • 中图分类号: O347

Dynamic Response Characteristics of Double-Row Suspended Steel Sheet Piles on Nearshore Slope under the Impact of Pile Hammer

  • 摘要: 岸坡锤击管桩施工过程中,为保证岸坡的安全稳定性,准确评估桩锤的动力荷载作用对岸坡支护钢板桩结构的影响非常重要。针对华容煤炭某码头一期工程,采用动力有限元数值模拟方法建立双排悬挂钢板桩结构计算模型;结合现场振动测试验证,分析桩锤振动作用下双排钢板桩的动力响应特性,实现桩锤振动影响下双排钢板桩的安全性评价。结果表明:钢板桩的位移变形与锤击位点相对位置的关系不大,上、下排钢板桩的最大位移分别为2.51和3.14 cm;最大主应力与锤击位点相对位置的关系不大,上、下排钢板桩的最大主应力均小于20 MPa;Mises应力最大值出现在钢板桩与锤击点垂直连线处,上、下排钢板桩的最大Mises应力分别为20.85和25.40 MPa。双排钢板桩的位移变形与应力处于安全控制范围内。

     

  • 图  拟定边坡开挖及支护方案

    Figure  1.  Proposed slope excavation and support plan

    图  现场测试点布置

    Figure  2.  Field test point layout

    图  数值计算模型

    Figure  3.  Numerical calculation model

    图  锤击力荷载曲线

    Figure  4.  Hammer loading force curve

    图  监测点P1在x方向的振动速度对比

    Figure  5.  x-axis velocity comparison at monitoring point P1

    图  监测点P1的合振动速度对比

    Figure  6.  Resultant velocity comparison at monitoring point P1

    图  位移和应力测点的布置

    Figure  7.  Layout of displacement and stress measurement points

    图  钢板桩结构的峰值位移分布

    Figure  8.  Peak displacement distribution of steel sheet pile structure

    图  典型测点的最大主应力

    Figure  9.  Maximum principal stress at typical measuring points

    图  10  Mises应力沿水平方向的分布

    Figure  10.  Mises stress distribution along the horizontal direction

    表  1  现场振动测试数据

    Table  1.   Field vibration test data

    No. Test No. PPV/(cm·s−1) N Distance/m
    1 2.000 7 13
    2 0.632 3 21
    3 0.158 6 38
    1 2.045 7 13
    2 0.644 2 21
    3 0.160 6 38
    1 2.025 7 13
    2 0.639 3 21
    3 0.160 3 38
    下载: 导出CSV

    表  2  数值模拟参数

    Table  2.   Numerical simulation parameters

    Material ρ/(kg·m−3) E0/GPa μ A/MPa B/MPa n C σ0/GPa
    Steel 7830 205 0.30 792 510 0.26 0.014
    Clay 1900 11 0.20 0.19, 0.15
    Mudstone 2230 15 0.22 0.30
    下载: 导出CSV

    表  3  质点峰值振动速度对比

    Table  3.   Comparison of PPVs

    No.Burst distance/mTest PPV/(cm·s−1)Simulated PPV/(cm·s−1)Relative error/%
    1132.0231.8677.7
    2210.6380.5769.7
    3380.1590.20528.9
    下载: 导出CSV
  • [1] 吕鹏, 董胜, 焉振, 等. U型钢板桩横向承载性能模型试验研究[J]. 海洋湖沼通报, 2023, 45(1): 1−9.

    LYU P, DONG S, YAN Z, et al. Experimental study on lateral bearing performance model of U-shaped steel sheet piles [J]. Marine and Lake Sciences Bulletin, 2023, 45(1): 1–9.
    [2] 焉振, 王元战. 考虑软基不排水强度循环弱化的格型钢板桩防波堤动力有限元分析 [J]. 岩土力学, 2017, 38(5): 1454–1462.

    YAN Z, WANG Y Z. Dynamic finite element analysis of geogrid steel sheet pile breakwater considering undrained strength degradation of soft foundation [J]. Rock and Soil Mechanics, 2017, 38(5): 1454–1462.
    [3] 郑国兵, 黄朝煊, 袁文喜, 等. 深厚淤泥中双排钢板桩结构安全稳定性研究 [J]. 水利水电科技进展, 2020, 40(4): 71–76.

    ZHENG G B, HUANG C X, YUAN W X, et al. Research on the safety and stability of double-row steel sheet pile structure in deep and thick silt [J]. Advances in Science and Technology of Water Resources and Hydropower Engineering, 2020, 40(4): 71–76.
    [4] 杨熠. 双排钢板桩围堰结构受力变形及稳定性分析 [D]. 南昌: 南昌大学, 2020.

    YANG Y. Analysis of stress, deformation, and stability of double-row steel sheet pile caisson structure [D]. Nanchang: Nanchang University, 2020.
    [5] 曹胜敏. 高桩码头桩竖向荷载下静动力学行为研究 [D]. 成都: 西南交通大学, 2008.

    CAO S M. Study on the static and dynamic behavior of high pile wharf piles under vertical loads [D]. Chengdu: Southwest Jiaotong University, 2008.
    [6] 王娜娜. 打桩下沉过程中的动力响应研究 [D]. 天津: 天津大学, 2012.

    WANG N N. Study on the dynamic response during pile driving process [D]. Tianjin: Tianjin University, 2012.
    [7] XIA Y, JIANG N, ZHOU C, et al. Dynamic behaviors of buried reinforced concrete pipelines with gasketed bell-and-spigot joints subjected to tunnel blasting vibration [J]. Tunnelling and Underground Space Technology, 2021, 118: 104172. doi: 10.1016/j.tust.2021.104172
    [8] JIANG N, ZHU B, ZHOU C, et al. Blasting vibration effect on the buried pipeline: a brief overview [J]. Engineering Failure Analysis, 2021, 129: 105709. doi: 10.1016/j.engfailanal.2021.105709
    [9] HALLQUIST J O. LS-DYNA theory manual [M]. Livermore, USA: Livermore Software Technology Corporation, 2006.
    [10] HALLQUIST J O. LS-DYNA keyword user’s manual version 971 [M]. Livermore, USA: Livermore Software Technology Corporation, 2007.
    [11] ZHOU Y, ZHANG S. Rupture and perforation responses of pressurized tubular members subjected to medium-velocity transverse impact loading [J]. Engineering Failure Analysis, 2021, 127: 105387. doi: 10.1016/j.engfailanal.2021.105387
    [12] YAO S, ZHANG D, LU Z, et al. Experimental and numerical investigation on the dynamic response of steel chamber under internal blast [J]. Engineering Structures, 2018, 168: 877–888. doi: 10.1016/j.engstruct.2018.03.067
    [13] 邓灵敏. 基于LS-DYNA的动力沉桩全过程分析 [D]. 武汉: 武汉理工大学, 2013.

    DENG L M. Dynamic analysis of the entire process of pile driving based on LS-DYNA [D]. Wuhan: Wuhan University of Technology, 2013.
    [14] JIANG N, ZHU B, HE X, et al. Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation [J]. Tunnelling and Underground Space Technology, 2020, 102: 103448. doi: 10.1016/j.tust.2020.103448
    [15] 杜闯, 丁红岩, 张浦阳, 等. 钢板桩围堰有限元分析 [J]. 岩土工程学报, 2014, 36(Suppl 2): 159–164.

    DU C, DING H Y, ZHANG P Y, et al. Finite element analysis of steel sheet pile caisson [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(Suppl 2): 159–164.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  38
  • PDF下载量:  16
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-09-07
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回