岩体可爆性的模糊决策理论及炸药单耗预测

武旭阳 李洪超 刘轩泽 张继 梁瑞 王富旗

武旭阳, 李洪超, 刘轩泽, 张继, 梁瑞, 王富旗. 岩体可爆性的模糊决策理论及炸药单耗预测[J]. 高压物理学报, 2023, 37(6): 065303. doi: 10.11858/gywlxb.20230700
引用本文: 武旭阳, 李洪超, 刘轩泽, 张继, 梁瑞, 王富旗. 岩体可爆性的模糊决策理论及炸药单耗预测[J]. 高压物理学报, 2023, 37(6): 065303. doi: 10.11858/gywlxb.20230700
WU Xuyang, LI Hongchao, LIU Xuanze, ZHANG Ji, LIANG Rui, WANG Fuqi. Fuzzy Decision Theory of Rock Mass Explodability and Prediction of Explosive Unit Consumption[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065303. doi: 10.11858/gywlxb.20230700
Citation: WU Xuyang, LI Hongchao, LIU Xuanze, ZHANG Ji, LIANG Rui, WANG Fuqi. Fuzzy Decision Theory of Rock Mass Explodability and Prediction of Explosive Unit Consumption[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065303. doi: 10.11858/gywlxb.20230700

岩体可爆性的模糊决策理论及炸药单耗预测

doi: 10.11858/gywlxb.20230700
基金项目: 国家自然科学基金(52164010,52364016)
详细信息
    作者简介:

    武旭阳(1998-),男,硕士研究生,主要从事工程爆破研究. E-mail:811733925@qq.com

    通讯作者:

    李洪超(1984-),男,博士,副教授,主要从事工程爆破及岩体破碎研究. E-mail:34031826@qq.com

  • 中图分类号: O381; TD235

Fuzzy Decision Theory of Rock Mass Explodability and Prediction of Explosive Unit Consumption

  • 摘要: 为推进岩体可爆性分级后的进一步工程实际应用,利用回归分析方法分析可爆性指标的相关性,最终确定以岩体的抗拉强度、密度、脆性指数、完整性系数4个基本不相关的参数作为评级指标;通过正交试验设计确定各评级指标的敏感性,并确定其权重;运用模糊决策理论对岩体进行可爆性评级,采用评级指标结合岩体基本质量指数,推出地下采矿浅孔爆破的炸药单耗预测公式,进一步推导出可爆性等级对应的炸药单耗预测区间。结果表明:模糊决策方法为岩体可爆性评级提供了一种新思路,同时也证明了权重分配与评级指标选取的正确性。现场爆破试验证明了炸药单耗预测区间的合理性,研究结果可为生产爆破和类似工程实践提供一定的指导。

     

  • 图  大理岩掏槽孔布置

    Figure  1.  Layout of marble cutting holes

    图  大理岩爆破效果

    Figure  2.  Effect of marble blasting

    图  氧化矿装药作业

    Figure  3.  Operation of oxide ore charging

    图  氧化矿连线作业

    Figure  4.  Operation of oxidation ore connection

    表  1  岩石的抗拉强度和抗剪强度

    Table  1.   Tensile and shear strength of rocks

    Rock category σt/MPa τ/MPa Rock category σt/MPa τ/MPa
    Magnetite ore 12 43 Migmatite 8.5 38
    Chlorite schist 2.6 12 Quartz schist 7 16
    Magnetite rich ore 11.5 40 Mixed metamorphic rock 4.81 21.66
    Amphibolite 7.07 22 Mixed granite 12.93 47.85
    k shell 8 32 Fault breccia 8.53 33.02
    下载: 导出CSV

    表  2  岩石的物理力学参数

    Table  2.   Physical and mechanical parameters of rock

    Rock No.ρ/(g·cm−3)σt/MPaηB
    12.6189.300.76712.74
    22.67414.250.7605.46
    33.8105.850.51016.20
    42.7107.050.41022.70
    52.64614.620.7804.40
    62.5887.610.8305.27
    72.91915.330.7933.94
    82.6319.710.76316.55
    93.41816.300.23011.87
    103.02921.040.1977.27
    112.72514.980.4808.01
    123.47918.260.77910.55
    下载: 导出CSV

    表  3  相关性分析结果

    Table  3.   Correlation analysis results

    Results β0 β1 R
    τ=0.3658+3.5369σt 0.3658 3.5369 0.8138
    B=5.2149+2.0844ρ 5.2149 2.0844 0.0084
    B=19.9728−0.7139σt 19.9728 −0.7139 0.2386
    B=14.3477−5.4339η 14.3477 −5.4339 0.0273
    下载: 导出CSV

    表  4  正交设计各因素水平

    Table  4.   Levels of various factors in orthogonal design

    Levelρ/(g·cm−3)σt/MPaBη
    12.6188.6110.770.360
    22.97513.387.790.513
    33.27020.145.460.783
    下载: 导出CSV

    表  5  正交设计试验L9(34)

    Table  5.   Orthogonal design test L9(34)

    Test No.Level
    ρσtBη
    11111
    21222
    31333
    42123
    52231
    62312
    73132
    83213
    93321
    下载: 导出CSV

    表  6  正交试验设计结果

    Table  6.   Orthogonal design test results

    Test No. ρ/(g·cm−3) σt/MPa B η Level[12]
    1 2.618 8.61 10.77 0.360 2
    2 2.618 13.38 7.79 0.513 4
    3 2.618 20.14 5.46 0.783 5
    4 2.975 8.61 7.79 0.783 7
    5 2.975 13.38 5.46 0.360 3
    6 2.975 20.14 10.77 0.513 4
    7 3.270 8.61 5.46 0.513 6
    8 3.270 13.38 10.77 0.783 6
    9 3.270 20.14 7.79 0.360 5
    K1 11 15 12 10
    K2 14 13 16 14
    K3 17 14 14 18
    Range 2 0.667 1.333 2.667
    Sensitiveness 2 4 3 1
    下载: 导出CSV

    表  7  可爆性分级标准

    Table  7.   Explosivity classification standards

    Rock mass explosivity levelρ/(g·cm−3)σt/MPaBηLevel
    2.506.617.50.0494Easiest
    2.6010.015.50.2555Easy
    2.7513.013.30.3654Easier
    2.9017.011.80.5122Medium
    3.1620.09.50.6021More difficult
    3.3023.06.00.7122Difficult
    3.4526.03.50.8232Most difficult
    下载: 导出CSV

    表  8  可爆性分级结果

    Table  8.   Explosion classification results

    Rock No. Proposed method Attribute recognition method Entropy weight theory method
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    下载: 导出CSV

    表  9  炸药单耗与岩石坚固性系数[22]

    Table  9.   Unit consumption and rock soundness coefficient of explosive[22]

    f q/(kg·m−3) f q/(kg·m−3)
    0–4 0.25–0.65 10–15 1.60–2.60
    5–8 0.65–1.00 >15 >2.80
    8–10 1.00–1.60
    下载: 导出CSV

    表  10  $BQ $与炸药单耗

    Table  10.   $BQ $ and explosive unit consumption

    BQ q/(kg·m−3) BQ q/(kg·m−3)
    ≤250 0.25–0.65 451–550 1.60–2.60
    251–350 0.65–1.00 >551 >2.80
    351–450 1.00–1.60
    下载: 导出CSV

    表  11  炸药单耗与$BQ $拟合结果

    Table  11.   Fitting results of explosive unit consumption and $BQ $

    Resultβ0β1R
    qll=–0.6180+0.0055BQ–0.61800.00550.9629
    qul=–0.7425+0.0075BQ−0.74250.00750.9425
    下载: 导出CSV

    表  12  岩石的$BQ $

    Table  12.   Rock $BQ $

    Rock No.BQRock No.BQ
    15887479
    25238588
    34559309
    440310597
    548911440
    642812595
    下载: 导出CSV

    表  13  评级与炸药单耗计算结果

    Table  13.   Rating and explosive unit consumption calculation results

    Level Number q/(kg·m−3) Level Number q/(kg·m−3)
    0 <0.77 12 1.91–2.71
    3 0.77–1.22 5 2.48–3.49
    8 1.17–1.69 0 >3.49
    11 1.58–2.26
    下载: 导出CSV

    表  14  岩矿试样的物理参数

    Table  14.   Physical parameters of rock specimen

    Rock typeρ/(g·cm−3)σt/MPaBη
    Marble2.724.6612.90.566
    Oxidized ore2.474.8615.10.156
    下载: 导出CSV
  • [1] 坦加耶夫 И А. 岩石的可钻性和可爆性 [M]. 王伟德, 周树良,译. 北京: 冶金工业出版社, 1987: 55–113.

    TANGAYEV И А. Drillability and explosive of rock [M]. Translated by WANG W D, ZHOU S L. Beijing: Metallurgical Industry Press, 1987: 55–113.
    [2] 张强. 岩体爆破性分级研究进展 [J]. 工程爆破, 1998, (3): 75–79,35.

    ZHANG Q. Advance in study on rock blastability classification [J]. Engineering Blasting, 1998, (3): 75–79,35.
    [3] XIAO S S, LI K M, DING X H, et al. Rock mass blastability classification using fuzzy pattern recognition and the combination weight method [J]. Mathematical Problems in Engineering, 2015, 12: 724619.
    [4] OZGUR Y. Rock factor prediction in the Kuz-Ram model and burden estimation by mean fragment size [J]. Geomechanics for Energy and the Environment, 2023, 33: 100415. doi: 10.1016/j.gete.2022.100415
    [5] 张紫晗, 胡光球, 郑建礼, 等. 基于脆性指数和熵权理论的岩体可爆性分级方法 [J]. 工程爆破, 2021, 27(5): 65–71.

    ZHANG Z H, HU G Q, ZHENG J L, et al. Rock blastability classification method based on brittleness index and entropy weight theory [J]. Engineering Blasting, 2021, 27(5): 65–71.
    [6] 史涵虚, 周传波, 蒋楠, 等. 魏家峁煤矿区深孔台阶剥离爆破施工岩体可爆性分析 [J]. 爆破, 2023, 40(1): 37–44.

    SHI H X, ZHOU C B, JIANG N, et al. Analysis on rock mass explosibility during deep-hole bench stripping by blasting in Weijiamao coal mine area [J]. Blasting, 2023, 40(1): 37–44.
    [7] 王文军, 李润然, 纪旭波, 等. 黑沟矿区露天开采矿岩可爆性分级研究 [J]. 金属矿山, 2021(4): 64–69.

    WANG W J, LI R R, JI X B, et al. Blastability classification of open pit mining in heigou mining area [J]. Metal Mine, 2021(4): 64–69.
    [8] WU S L, YANG S, WANG Q Y. Classification of open pit iron mine rock mass blastability based on concept lattice and rough set [J]. Geotechnical and Geological Engineering: An International Journal, 2020, 38(1): 449–458. doi: 10.1007/s10706-019-01036-3
    [9] ZHOU T, HU H J, KUANG Y, et al. Improved rock engineering system (RES)-multidimensional cloud evaluation model and its application to the rock mass blastability [J]. IEEE Access, 2019, 7: 100305. doi: 10.1109/ACCESS.2019.2930629
    [10] ALIPOUR A, MOKHARIAN M, CHEHREGHANI S. An application of fuzzy sets to the blastability index (BI) used in rock engineering [J]. Periodica Polytechnica Civil Engineering, 2018, 62(3): 580–589.
    [11] 冯夏庭. 岩石可爆性神经网络研究 [J]. 爆炸与冲击, 1994, 14(4): 298–306.

    FENG X T. A study on neural network on rock blastability [J]. Explosion and Shock Waves, 1994, 14 (4): 298–306.
    [12] 马红贝, 赵国彦, 路凡. 岩体可爆性分级评价的集对分析模型 [J]. 爆破, 2016, 33(2): 28–31, 38.

    MA H B, ZHAO G Y, LU F. Set pair analysis model for rock blastability classification estimation [J]. Blasting, 2016, 33(2): 28–31, 38.
    [13] 白玉奇, 李振阳, 李传增, 等. 基于CRITIC-Vague模型的岩体可爆性评价 [J]. 金属矿山, 2020(12): 27–32.

    BAI Y Q, LI Z Y, LI C Z, et al. Assessment for rock mass blastability based on CRITIC-Vague model [J]. Metal Mine, 2020(12): 27–32.
    [14] 丁小华, 原文杰, 解祯, 等. 基于综合赋权云模型的露天矿岩体可爆性分级识别 [J]. 煤炭科学技术, 2019, 47(10): 96–101.

    DING X H, YUAN W J, XIE Z, et al. Classification and identification of rock blastability in open-pit mine based on comprehensive weighted cloud model [J]. Coal Science and Technology, 2019, 47(10): 96–101.
    [15] 刘恩龙, 沈珠江. 岩土材料的脆性研究 [J]. 岩石力学与工程学报, 2005, 24(19): 51–55.

    LIU E L, SHEN Z J. Study on brittleness of geomaterials [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 51–55.
    [16] 璩世杰, 辛明印, 毛市龙, 等. 岩体可爆性指标的相关性分析 [J]. 岩石力学与工程学报, 2005, 24(3): 468–473.

    QU S J, XIN M Y, MAO S L, et al. Correlation analyses of blastability indexes for rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 468–473.
    [17] 潘勇, 杨天祥. 岩体可爆性分级的神经网络判别方法 [J]. 现代矿业, 2013, 29(1): 21–23.

    PAN Y, YANG T X. Neural network discriminant method of rock blasting classification [J]. Modern Mining, 2013, 29(1): 21–23.
    [18] 璩世杰, 齐宝军, 许文耀, 等. 水厂铁矿岩体可爆性分级方法与应用 [J]. 金属矿山, 2009, 39(11): 25–27, 178.

    QU S J, QI B J, XU W Y, et al. Rock mass blastability classification and its application in shuichang open pit mine [J]. Metal Mine, 2009, 39(11): 25–27, 178.
    [19] 张德明, 王新民, 郑晶晶, 等. 基于模糊综合评判的矿岩体可爆性分级 [J]. 爆破, 2010, 27(4): 43–47.

    ZHANG D M, WANG X M, ZHENG J J, et al. Blastability classification of rock and mine based on fuzzy comprehensive evaluation [J]. Blasting, 2010, 27(4): 43–47.
    [20] 高成宇. 巴鲁巴铜矿基于加权聚类分析的岩体可爆性分级 [J]. 铜业工程, 2014(2): 28–31.

    GAO C Y. Rock-mass blastability classification of baluba copper mine based on weighted clustering analysis [J]. Copper Engineering, 2014(2): 28–31.
    [21] 李蓉, 宋娟, 何永延. 基于属性识别理论的岩体可爆性分级方法 [J]. 金属矿山, 2008, 38(5): 32–34,48.

    LI R, SONG J, HE Y Y. Classification for rockmass blastability based on attribute recognition theory [J]. Metal Mine, 2008, 38(5): 32–34,48.
    [22] 汪旭光. 爆炸设计与施工 [M]. 第2版. 北京: 冶金工业出版社, 2011: 303–305.

    WANG X G. Explosion design and construction [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2011: 303–305.
    [23] 长江水利委员会长江科学院. 工程岩体分级标准: GB/T 50218—2014 [S]. 北京: 中国计划出版社, 2015.
  • 加载中
图(4) / 表(14)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  64
  • PDF下载量:  23
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-08-31
  • 网络出版日期:  2023-12-11
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回