基于原子力显微镜的压痕技术及其应用

王晓萌 高扬

王晓萌, 高扬. 基于原子力显微镜的压痕技术及其应用[J]. 高压物理学报, 2023, 37(6): 060103. doi: 10.11858/gywlxb.20230694
引用本文: 王晓萌, 高扬. 基于原子力显微镜的压痕技术及其应用[J]. 高压物理学报, 2023, 37(6): 060103. doi: 10.11858/gywlxb.20230694
WANG Xiaomeng, GAO Yang. Atomic Force Microscope Based Indentation Techniques and Their Applications[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 060103. doi: 10.11858/gywlxb.20230694
Citation: WANG Xiaomeng, GAO Yang. Atomic Force Microscope Based Indentation Techniques and Their Applications[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 060103. doi: 10.11858/gywlxb.20230694

基于原子力显微镜的压痕技术及其应用

doi: 10.11858/gywlxb.20230694
基金项目: 国家自然科学基金(12102386,12192211)
详细信息
    作者简介:

    王晓萌(1999-),男,硕士研究生,主要从事二维材料力学性质研究. E-mail:22124005@zju.edu.cn

    通讯作者:

    高 扬(1989-),男,博士,研究员,主要从事微纳米力学及二维材料研究. E-mail:ygao96@zju.edu.cn

  • 中图分类号: O521.3; O521.2

Atomic Force Microscope Based Indentation Techniques and Their Applications

  • 摘要: 基于原子力显微镜的压痕技术具有高分辨、高精度等优点,是表征材料力学性质的重要手段,在材料科学、纳米科学、生物力学等领域具有广泛应用。首先,介绍了原子力显微镜及相关压痕技术的基本工作原理;然后,回顾总结了基于原子力显微镜的压痕技术在低维材料、软材料等领域的应用;接着,简要综述了原子力显微镜技术在二维材料高压相变方面的最新研究进展,着重介绍基于原子力显微镜的新型埃压痕技术,该技术可施加亚纳米级压痕深度,有效表征与调控二维材料的层间耦合作用;最后,对基于原子力显微镜的压痕技术在未来的发展和应用进行了展望。

     

  • 图  基于AFM的压痕技术的应用

    Figure  1.  Applications of indentation techniques based on AFM

    图  AFM和压痕技术

    Figure  2.  AFM and indentation techniques

    图  二维材料示意图[1213]

    Figure  3.  Schematic of 2D materials[1213]

    图  悬空二维材料的纳米压痕实验[3, 46, 48]

    Figure  4.  Nanoindentation experiment of suspended two-dimensional materials[3, 46, 48]

    图  悬空金属薄膜的纳米压痕实验[11]

    Figure  5.  Nanoindentation experiment of suspended metal nanosheets[11]

    图  埃压痕实验装置、弹性力学模型以及实验结果[59]

    Figure  6.  Å-indentation experimental set-up, elastic mechanics model and experimental results[59]

    图  氧化石墨烯的层间力学性质[60]

    Figure  7.  Interlayer elasticity of graphene oxide[60]

    图  双层石墨烯-单层金刚石相变[7172]

    Figure  8.  Bilayer graphene-monolayer diamond phase transition[7172]

    图  六方氮化硼-金刚石氮化硼相变[81]

    Figure  9.  Hexagonal-to-diamond phase transition of boron nitride[81]

    图  10  生物材料的纳米压痕实验[9294]

    Figure  10.  AFM-based indentation on biomaterials[9294]

    表  1  基于悬空纳米压痕技术获得的部分常见二维材料的力学性能

    Table  1.   Mechanical properties of some typical 2D materials by suspended nanoindentation

    MaterialsElastic modulus/GPaStrength/GPa
    Monolayer graphene[3]1000±100130
    Monolayer boron nitride[45]865±7370.5±5.5
    Monolayer MoS2[43]270±10023
    Multilayer MoS2[46]210–370
    Monolayer WSe2[56]258.6±38.338.0±6.0
    Multilayer WSe2[55]167.3±6.712.4
    Monolayer WS2[56]302.4±24.147.0±8.6
    Monolayer WTe2[56]149.1±9.46.4±3.3
    Multilayer black phosphorous[54]276±32.425
    下载: 导出CSV
  • [1] BINNIG G, QUATE C F, GERBER C. Atomic force microscope [J]. Physical Review Letters, 1986, 56(9): 930–933. doi: 10.1103/PhysRevLett.56.930
    [2] STYLIANOU A, KONTOMARIS S V, GRANT C, et al. Atomic force microscopy on biological materials related to pathological conditions [J]. Scanning, 2019: 8452851. doi: 10.1155/2019/8452851
    [3] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].Science, 2008, 321(5887): 385–388. doi: 10.1126/science.1157996
    [4] LIU K, WU J Q. Mechanical properties of two-dimensional materials and heterostructures [J]. Journal of Materials Research, 2016, 31(7): 832–844. doi: 10.1557/jmr.2015.324
    [5] AKINWANDE D, BRENNAN C J, BUNCH J S, et al. A review on mechanics and mechanical properties of 2D materials: graphene and beyond [J]. Extreme Mechanics Letters, 2017, 13: 42–77. doi: 10.1016/j.eml.2017.01.008
    [6] PAPAGEORGIOU D G, KINLOCH I A, YOUNG R J. Mechanical properties of graphene and graphene-based nanocomposites [J]. Progress in Materials Science, 2017, 90: 75–127. doi: 10.1016/j.pmatsci.2017.07.004
    [7] CAO G X, GAO H J. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments [J].Progress in Materials Science, 2019, 103: 558–595. doi: 10.1016/j.pmatsci.2019.03.002
    [8] LI B W, YIN J, LIU X F, et al. Probing van der Waals interactions at two-dimensional heterointerfaces [J]. Nature Nanotechnology, 2019, 14(6): 567–572. doi: 10.1038/s41565-019-0405-2
    [9] YU Q, ZHANG J Y, LI J, et al. Strong, ductile, and tough nanocrystal-assembled freestanding gold nanosheets [J]. Nano Letters, 2022, 22(2): 822–829. doi: 10.1021/acs.nanolett.1c04553
    [10] QIN H L, JIN J, PENG X S, et al. Mechanical properties of free-standing single layers of metallic nanocrystals [J]. Journal of Materials Chemistry, 2010, 20(5): 858–861. doi: 10.1039/B923745N
    [11] PARK M, YU Q, WANG Q, et al. Ultrastrong yet ductile 2D titanium nanomaterial for on-skin conformal triboelectric sensing [J]. Nano Letters, 2023, 23(12): 5802–5810. doi: 10.1021/acs.nanolett.3c01776
    [12] GUO B, XIAO Q L, WANG S H, et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications [J].Laser & Photonics Reviews, 2019, 13(12): 1800327. doi: 10.1002/lpor.201800327
    [13] GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures [J]. Nature, 2013, 499(7459): 419–425. doi: 10.1038/nature12385
    [14] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896
    [15] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J].Nature, 2005, 438(7065): 197–200. doi: 10.1038/nature04233
    [16] BERGER C, SONG Z M, LI T B, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J]. The Journal of Physical Chemistry B, 2004, 108(52): 19912–19916. doi: 10.1021/jp040650f
    [17] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183–191. doi: 10.1038/nmat1849
    [18] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene [J]. Nature, 2005, 438(7065): 201–204. doi: 10.1038/nature04235
    [19] GEIM A K, NOVOSELOV K S. The rise of graphene [M]//Nanoscience and Technology. World Scientific, 2007: 11−19.
    [20] GEIM A K. Graphene: status and prospects [J]. Science, 2009, 324(5934): 1530–1534. doi: 10.1126/science.1158877
    [21] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene [J]. Reviews of Modern Physics, 2009, 81(1): 109–62. doi: 10.1103/RevModPhys.81.109
    [22] SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano Letters, 2010, 10(4): 1271–1275. doi: 10.1021/nl903868w
    [23] LEE C, LI Q Y, KALB W, et al. Frictional characteristics of atomically thin sheets [J]. Science, 2010, 328(5974): 76–80. doi: 10.1126/science.1184167
    [24] ZHAO P D, DESAI S, TOSUN M, et al. 2D layered materials: from materials properties to device applications[C]//2015 IEEE International Electron Devices Meeting (IEDM). Washington, USA: IEEE, 2015: 27.
    [25] BAI F, XU L, ZHAI X Y, et al. Vacancy in ultrathin 2D nanomaterials toward sustainable energy application [J]. Advanced Energy Materials, 2020, 10(11): 1902107. doi: 10.1002/aenm.201902107
    [26] MA J H, LIU H F, YANG N, et al. Circuit-level memory technologies and applications based on 2D materials [J]. Advanced Materials, 2022, 34(48): 2202371. doi: 10.1002/adma.202202371
    [27] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene [J].Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965
    [28] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J].Nature, 2018, 556(7699): 80–84. doi: 10.1038/nature26154
    [29] CAO Y, FATEMI V, FANG S A, et al. Unconventional superconductivity in magic-angle graphene superlattices [J].Nature, 2018, 556(7699): 43–50. doi: 10.1038/nature26160
    [30] ZHOU Y, SUNG J, BRUTSCHEA E, et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure [J].Nature, 2021, 595(7865): 48–52. doi: 10.1038/s41586-021-03560-w
    [31] DECKER R, WANG Y, BRAR V W, et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy [J]. Nano Letters, 2011, 11(6): 2291–2295. doi: 10.1021/nl2005115
    [32] TRAN K, MOODY G, WU F C, et al. Evidence for moiré excitons in van der Waals heterostructures [J]. Nature, 2019, 567(7746): 71–75. doi: 10.1038/s41586-019-0975-z
    [33] SEYLER K L, RIVERA P, YU H Y, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers [J]. Nature, 2019, 567(7746): 66–70. doi: 10.1038/s41586-019-0957-1
    [34] JIN C H, REGAN E C, YAN A M, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices [J].Nature, 2019, 567(7746): 76–80. doi: 10.1038/s41586-019-0976-y
    [35] 高扬. 原子力显微镜在二维材料力学性能测试中的应用综述 [J]. 力学学报, 2021, 53(4): 929–943. doi: 10.6052/0459-1879-20-354

    GAO Y. Review of the application of atomic force microscopy in testing the mechanical properties of two-dimensional materials [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 929–943. doi: 10.6052/0459-1879-20-354
    [36] FRANK I W, TANENBAUM D M, VAN DER ZANDE A M, et al. Mechanical properties of suspended graphene sheets [J].Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2007, 25(6): 2558–2561. doi: 10.1116/1.2789446
    [37] LIU F, MING P B, LI J. Ab initio calculation of ideal strength and phonon instability of graphene under tension [J]. Physical Review B, 2007, 76(6): 064120. doi: 10.1103/PhysRevB.76.064120
    [38] WEI Y J, YANG R G. Nanomechanics of graphene [J]. National Science Review, 2019, 6(2): 324–348. doi: 10.1093/nsr/nwy067
    [39] ZHAO H, MIN K, ALURU N R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension [J]. Nano Letters, 2009, 9(8): 3012–3015. doi: 10.1021/nl901448z
    [40] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展 [J]. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486

    WANG H, XU M, ZHENG R K. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures [J]. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [41] WAN K T, GUO S, DILLARD D A. A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress [J]. Thin Solid Films, 2003, 425(1/2): 150–162. doi: 10.1016/S0040-6090(02)01103-3
    [42] KOMARAGIRI U, BEGLEY M R, SIMMONDS J G. The mechanical response of freestanding circular elastic films under point and pressure loads [J]. Journal of Applied Mechanics, 2005, 72(2): 203–212. doi: 10.1115/1.1827246
    [43] BERTOLAZZI S, BRIVIO J, KIS A. Stretching and breaking of ultrathin MoS2 [J]. ACS Nano, 2011, 5(12): 9703–9709. doi: 10.1021/nn203879f
    [44] CASTELLANOS-GOMEZ A, POOT M, STEELE G A, et al. Elastic properties of freely suspended MoS2 nanosheets [J]. Advanced Materials, 2012, 24(6): 772–775. doi: 10.1002/adma.201103965
    [45] FALIN A, CAI Q R, SANTOS E J G, et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions [J]. Nature Communications, 2017, 8: 15815. doi: 10.1038/ncomms15815
    [46] LIPATOV A, LU H D, ALHABEB M, et al. Elastic properties of 2D Ti3C2T x MXene monolayers and bilayers [J]. Science Advances, 2018, 4(6): eaat0491. doi: 10.1126/sciadv.aat0491
    [47] CHITARA B, YA’AKOBOVITZ A. Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets [J].Nanoscale, 2018, 10(27): 13022–13027. doi: 10.1039/C8NR01065J
    [48] SUN Y F, WANG Y J, WANG E Z, et al. Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation [J].Nature Communications, 2022, 13(1): 3898. doi: 10.1038/s41467-022-31685-7
    [49] GUO L L, YAN H M, MOORE Q, et al. Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets [J].Nanoscale, 2015, 7(28): 11915–11921. doi: 10.1039/C5NR03282B
    [50] LI C, BANDO Y, ZHI C Y, et al. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets [J].Nanotechnology, 2009, 20(38): 385707. doi: 10.1088/0957-4484/20/38/385707
    [51] LI Y H, YU C B, GAN Y Y, et al. Elastic properties and intrinsic strength of two-dimensional InSe flakes [J]. Nanotechnology,2019, 30(33): 335703. doi: 10.1088/1361-6528/ab1a96
    [52] SUN Y F, PAN J B, ZHANG Z T, et al. Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2 [J].Nano Letters, 2019, 19(2): 761–769. doi: 10.1021/acs.nanolett.8b03833
    [53] WANG H, SANDOZ-ROSADO E J, TSANG S H, et al. Elastic properties of 2D ultrathin tungsten nitride crystals grown by chemical vapor deposition [J]. Advanced Functional Materials, 2019, 29(31): 1902663. doi: 10.1002/adfm.201902663
    [54] WANG J Y, LI Y, ZHAN Z Y, et al. Elastic properties of suspended black phosphorus nanosheets [J]. Applied Physics Letters, 2016, 108(1): 013104. doi: 10.1063/1.4939233
    [55] ZHANG R, KOUTSOS V, CHEUNG R. Elastic properties of suspended multilayer WSe2 [J]. Applied Physics Letters, 2016, 108(4): 042104. doi: 10.1063/1.4940982
    [56] FALIN A, HOLWILL M, LV H F, et al. Mechanical properties of atomically thin tungsten dichalcogenides: WS2, WSe2, and WTe2 [J]. ACS Nano, 2021, 15(2): 2600–2610. doi: 10.1021/acsnano.0c07430
    [57] WU B, HEIDELBERG A, BOLAND J J. Mechanical properties of ultrahigh-strength gold nanowires [J]. Nature Materials, 2005, 4(7): 525–529. doi: 10.1038/nmat1403
    [58] KIM Y J, SON K, CHOI I C, et al. Exploring nanomechanical behavior of silicon nanowires: AFM bending versus nanoindentation [J]. Advanced Functional Materials, 2011, 21(2): 279–286. doi: 10.1002/adfm.201001471
    [59] CELLINI F, GAO Y, RIEDO E. Å-indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures [J]. Scientific Reports, 2019, 9(1): 4075. doi: 10.1038/s41598-019-40636-0
    [60] GAO Y, KIM S, ZHOU S, et al. Elastic coupling between layers in two-dimensional materials [J]. Nature Materials, 2015, 14(7): 714–720. doi: 10.1038/nmat4322
    [61] GAO Y. Force microscopy of two-dimensional materials [D]. Atlanta: Georgia Insititute of Technology, 2017: 44−51.
    [62] KELLY B T. Physics of graphite [M]. London: Applied Science, 1981.
    [63] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite [J]. Cement and Concrete Composites, 2015, 58: 140–147. doi: 10.1016/j.cemconcomp.2015.02.001
    [64] MOUHAT F, COUDERT F X, BOCQUET M L. Structure and chemistry of graphene oxide in liquid water from first principles [J].Nature Communications, 2020, 11(1): 1566. doi: 10.1038/s41467-020-15381-y
    [65] RAJASEKARAN S, ABILD-PEDERSEN F, OGASAWARA H, et al. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene [J]. Physical Review Letters, 2013, 111(8): 085503. doi: 10.1103/PhysRevLett.111.085503
    [66] KVASHNIN A G, CHERNOZATONSKII L A, YAKOBSON B I, et al. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond [J]. Nano Letters, 2014, 14(2): 676–681. doi: 10.1021/nl403938g
    [67] MARTINS L G P, MATOS M J S, PASCHOAL A R, et al. Raman evidence for pressure-induced formation of diamondene [J].Nature Communications, 2017, 8(1): 96. doi: 10.1038/s41467-017-00149-8
    [68] BAKHAREV P V, HUANG M, SAXENA M, et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond [J]. Nature Nanotechnology, 2020, 15(1): 59–66. doi: 10.1038/s41565-019-0582-z
    [69] KE F, CHEN Y B, YIN K T, et al. Large bandgap of pressurized trilayer graphene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(19): 9186–9190. doi: 10.1073/pnas.1820890116
    [70] KE F, ZHANG L K, CHEN Y B, et al. Synthesis of atomically thin hexagonal diamond with compression [J]. Nano Letters, 2020, 20(8): 5916–5921. doi: 10.1021/acs.nanolett.0c01872
    [71] GAO Y, CAO T F, CELLINI F, et al. Ultrahard carbon film from epitaxial two-layer graphene [J]. Nature Nanotechnology, 2018, 13(2): 133–138. doi: 10.1038/s41565-017-0023-9
    [72] CELLINI F, LAVINI F, CAO T F, et al. Epitaxial two-layer graphene under pressure: diamene stiffer than diamond [J].FlatChem, 2018, 10: 8–13. doi: 10.1016/j.flatc.2018.08.001
    [73] CHAI P, LI S, LI Y, et al. Mechanical behavior investigation of 4H-SiC single crystal at the micro-nano scale [J]. Micromachines (Basel), 2020, 11(1).
    [74] LIN J, CHEN H, GAO Y, et al. Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite [J]. Proceedings of the National Academy of Sciences, 2019, 116(47): 23404. doi: 10.1073/pnas.1907576116
    [75] REJHON M, ZHOU X, LAVINI F, et al. Giant increase of hardness in silicon carbide by metastable single layer diamond-like coating [J]. Advanced Science (Weinh), 2023, 10(6): e2204562. doi: 10.1002/advs.202204562
    [76] BRAZHKIN V V, LYAPIN A G, HEMLEY R J. Harder than diamond: dreams and reality [J]. Philosophical Magazine A, 2002, 82(2): 231–253. doi: 10.1080/01418610208239596
    [77] SZCZEFANOWICZ B, KUWAHARA T, FILLETER T, et al. Formation of intermittent covalent bonds at high contact pressure limits superlow friction on epitaxial graphene [J]. Physical Review Research, 2023, 5(1): L012049. doi: 10.1103/PhysRevResearch.5.L012049
    [78] HOFMANN T, REN X G, WEYMOUTH A J, et al. Evidence for temporary and local transition of sp2 graphite-type to sp3 diamond-type bonding induced by the tip of an atomic force microscope [J]. New Journal of Physics, 2022, 24(8): 083018. doi: 10.1088/1367-2630/ac8570
    [79] ARES P, PISARRA M, SEGOVIA P, et al. Tunable graphene electronics with local ultrahigh pressure [J]. Advanced Functional Materials, 2019, 29(8): 1806715. doi: 10.1002/adfm.201806715
    [80] SUN J H, CHANG K K, MEI D H, et al. Mutual identification between the pressure-induced superlubricity and the image contrast inversion of carbon nanostructures from AFM technology [J]. The Journal of Physical Chemistry Letters, 2019, 10(7): 1498–1504. doi: 10.1021/acs.jpclett.9b00155
    [81] CELLINI F, LAVINI F, CHEN E, et al. Pressure-induced formation and mechanical properties of 2D diamond boron nitride [J].Advanced Science, 2021, 8(2): 2002541. doi: 10.1002/advs.202002541
    [82] WANG D, RUSSELL T P. Advances in atomic force microscopy for probing polymer structure and properties [J]. Macromolecules, 2018, 51(1): 3–24. doi: 10.1021/acs.macromol.7b01459
    [83] 关东石, 李航宇, 童彭尔. 原子力显微镜的生物力学实验方法和研究进展 [J]. 实验流体力学, 2020, 34(2): 57–66. doi: 10.11729/syltlx20200026

    GUAN D S, LI H Y, TONG P E. Experimental methods and recent progress in biomechanics using atomic force microscopy [J].Journal of Experiments in Fluid Mechanics, 2020, 34(2): 57–66. doi: 10.11729/syltlx20200026
    [84] ZHOU G Q, ZHANG B K, TANG G L, et al. Cells nanomechanics by atomic force microscopy: focus on interactions at nanoscale [J]. Advances in Physics: X, 2021, 6(1): 1866668. doi: 10.1080/23746149.2020.1866668
    [85] CHAUDHURI O, COOPER-WHITE J, JANMEY P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour [J]. Nature, 2020, 584(7822): 535–546. doi: 10.1038/s41586-020-2612-2
    [86] LI M, XI N, WANG Y C, et al. Advances in atomic force microscopy for single-cell analysis [J]. Nano Research, 2019, 12(4): 703–718. doi: 10.1007/s12274-018-2260-0
    [87] MÜLLER D J, DUMITRU A C, LO GIUDICE C, et al. Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems [J]. Chemical Reviews, 2021, 121(19): 11701–11725. doi: 10.1021/acs.chemrev.0c00617
    [88] BOSE K, NANDI T, AINAVARAPU S R K. Applications of atomic force microscopy in modern biology [J]. Emerging Topics in Life Sciences, 2021, 5(1): 103–111. doi: 10.1042/ETLS20200255
    [89] PINTO G, DANTE S, ROTONDI S M C, et al. Spectroscopic ellipsometry investigation of a sensing functional interface: DNA SAMs hybridization [J]. Advanced Materials Interfaces, 2022, 9(19): 2200364. doi: 10.1002/admi.202200364
    [90] BANERJEE S, LYUBCHENKO Y L. Topographically smooth and stable supported lipid bilayer for high-resolution AFM studies [J]. Methods, 2022, 197: 13–19. doi: 10.1016/j.ymeth.2021.02.010
    [91] ABAY A, SIMIONATO G, CHACHANIDZE R, et al. Glutaraldehyde: a subtle tool in the investigation of healthy and pathologic red blood cells [J]. Frontiers in Physiology, 2019, 10: 514. doi: 10.3389/fphys.2019.00514
    [92] ARGATOV I, JIN X Q, MISHURIS G. AFM-based spherical indentation of a brush-coated soft material: modeling the bottom effect [J]. Soft Matter, 2023, 19(26): 4891–4898. doi: 10.1039/D3SM00432E
    [93] SHEN Y S, GUAN D S, SERIEN D, et al. Mechanical characterization of microengineered epithelial cysts by using atomic force microscopy [J]. Biophysical Journal, 2017, 112(2): 398–409. doi: 10.1016/j.bpj.2016.12.026
    [94] DUMITRU A C, PONCIN M A, CONRARD L, et al. Nanoscale membrane architecture of healthy and pathological red blood cells [J]. Nanoscale Horizons, 2018, 3(3): 293–304. doi: 10.1039/C7NH00187H
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  78
  • PDF下载量:  55
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2023-09-04
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回