针对电磁感应测速系统的有限元模拟

吴潇 张乐 马小娟 张明建 刘福生

吴潇, 张乐, 马小娟, 张明建, 刘福生. 针对电磁感应测速系统的有限元模拟[J]. 高压物理学报, 2023, 37(6): 063401. doi: 10.11858/gywlxb.20230693
引用本文: 吴潇, 张乐, 马小娟, 张明建, 刘福生. 针对电磁感应测速系统的有限元模拟[J]. 高压物理学报, 2023, 37(6): 063401. doi: 10.11858/gywlxb.20230693
WU Xiao, ZHANG Le, MA Xiaojuan, ZHANG Mingjian, LIU Fusheng. Finite Element Simulation for Magnet Velocity Induction System[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 063401. doi: 10.11858/gywlxb.20230693
Citation: WU Xiao, ZHANG Le, MA Xiaojuan, ZHANG Mingjian, LIU Fusheng. Finite Element Simulation for Magnet Velocity Induction System[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 063401. doi: 10.11858/gywlxb.20230693

针对电磁感应测速系统的有限元模拟

doi: 10.11858/gywlxb.20230693
基金项目: 国家自然科学基金(41674008,11002120);四川省自然科学基金(2022NSFSC0340);西南交通大学专项(XJ2021KJZK055)
详细信息
    作者简介:

    吴 潇(1996-),男,博士研究生,主要从事动高压下的凝聚态物理研究.E-mail:2215189687@qq.com

    通讯作者:

    马小娟(1976-),女,博士,教授,博士生导师,主要从事冲击高压下的实验物理研究. E-mail:mxj_swjtu@126.com

  • 中图分类号: O521.3; O44

Finite Element Simulation for Magnet Velocity Induction System

  • 摘要: 在冲击加载实验中,飞片速度是确定样品动态压缩性的重要参量。电磁感应测速系统是针对超高速运动状态的速度测量系统。基于有限元方法和ANSYS Electromagnetics Suite三维建模,模拟了飞片的测速过程,并验证了模拟结果的可靠性。结合实验结果,证实相同条件下模拟信号的感应电动势误差为1.1%,低于系统误差(2.0%)。模拟信号的测速误差小于0.4%,低于系统测速误差(0.9%)。分析了Al、Cu、Ta、W、93W飞片在不同飞片厚度、半径、倾斜角度、运动速度以及线圈孔径条件下检测线圈中感应电动势的变化规律。模拟结果为在冲击实验中更好地测量飞片速度提供了参考。

     

  • 图  MAVIS示意图

    Figure  1.  Schematic diagram of MAVIS

    图  MAVIS的工作原理

    Figure  2.  Working principle of MAVIS

    图  MAVIS的三维模型

    Figure  3.  Three-dimensional model of MAVIS

    图  静态空间中的磁场分布

    Figure  4.  Distribution of the static magnetic field

    图  模拟与实验IEMF信号的对比

    Figure  5.  Comparison of simulated and experimental IEMF signals

    图  模拟与实验得到的不同发射速度下AIEMF随飞片厚度的变化

    Figure  6.  Simulated and experimental AIEMF depending on the thickness of flyer at various launch velocities

    图  模拟与实验得到的不同发射速度下AIEMF随飞片半径的变化

    Figure  7.  Simulated and experimental AIEMF depending on the flyer radius at various launch velocities

    图  飞片倾角示意图

    Figure  8.  Schematic diagram of tilt angle

    图  模拟得到的不同发射速度下时间间隔和AIEMF随倾斜角的变化

    Figure  9.  Simulated time intervals and AIEMF depending on the tilt angles at various launch velocities

    图  10  模拟得到的不同孔径的检测线圈的IEMF信号(v=3 km/s,d=2.5 mm,r=12 mm)

    Figure  10.  Simulated IEMF signals produced by the pick-up coils with different diameters (v=3 km/s, d=2.5 mm, r=12 mm)

    图  11  模拟得到的不同速度下AIEMF随检测线圈孔径的变化(d=2.5 mm,r=12 mm)

    Figure  11.  Simulated AIEMF at various launch velocities produced by the pick-up coils with different diameters (d=2.5 mm, r=12 mm)

    图  12  模拟与实验得到的AIEMF随飞片速度的变化

    Figure  12.  Dependence of the simulated and experimental AIEMF with the launch velocity of flyer

    图  13  模拟与实验得到的AIEMF随铜飞片厚度及半径的变化

    Figure  13.  Dependence of the simulated and experimental AIEMF with thickness and radius of copper flyer

    图  14  模拟与实验得到的AIEMF随钽飞片厚度及半径的变化

    Figure  14.  Dependence of the simulated and experimental AIEMF with thickness and radius of tantalum flyer

    图  15  模拟与实验得到的AIEMF随钨飞片厚度及半径的变化

    Figure  15.  Dependence of the simulated and experimental AIEMF with thickness and radius of tungsten flyer

    图  16  模拟与实验得到的AIEMF随93W飞片厚度及半径的变化

    Figure  16.  Dependence of the simulated and experimental AIEMF with thickness and radius of 93W flyer

    表  1  AIEMF的实验和模拟结果

    Table  1.   Simulated and experimental results of AIEMF

    MethodA1/mVA2/mVA3/mV
    Simulation3296.73234.13096.2
    Experiment3251.43208.73051.6
    下载: 导出CSV
  • [1] 孟川舒. 高速磁浮列车测速定位问题综述 [J/OL]. 铁道标准设计(2022-11-28)[2023-07-12]. https://kns.cnki.net/kcms2/article/abstract?v=TzO8JwpG6ugvCh-VGkUDKgKSZPKAKEbopyhecrl89N6uki3CMZ5uouIaNOSIOf8Ya06yC3QPR-3M4jto4JTCewpY3QWpdpyAmYonBoBHY8EntNgbINmCcBTOTp6ELQ3HT9SUsH1gOOQ=&uniplatform=NZKPT&language=CHS. DOI: 10.13238/j.issn.1004-2954.202208010006.

    MENG C S. Review on problems of speed measurement and positioning of high speed maglev train [J/OL]. Railway Standard Design (2022-11-28)[2023-07-12]. https://kns.cnki.net/kcms2/article/abstract?v=TzO8JwpG6ugvCh-VGkUDKgKSZPKAKEbopyhecrl89N6uki3CMZ5uouIaNOSIOf8Ya06yC3QPR-3M4jto4JTCewpY3QWpdpyAmYonBoBHY8EntNgbINmCcBTOTp6ELQ3HT9SUsH1gOOQ=&uniplatform=NZKPT&language=CHS. DOI: 10.13238/j.issn.1004-2954.202208010006.
    [2] 柴博森, 闫东, 王广义, 等. 制动工况桃腔偶合器三维涡特征分析及仿真评价 [J]. 吉林大学学报(工学版), 2023: 1−10.

    CHAI B S, YAN D, WANG G Y, et al. Three-dimensional vortex characteristic analysis and simulation evaluation of peach cavity hydrodynamic coupling under braking condition [J]. Journal of Jilin University (Engineering and Technology Edition), 2023: 1−10.
    [3] 马付远, 张明宇, 徐伟利. 基于多普勒雷达和北斗系统的农业机械测速方法研究 [J]. 农机化研究, 2023, 45(9): 150–154.

    MA F Y, ZHANG M Y, XU W L. Research on speed measurement methods of agricultural machinery based on Doppler radar and BDS [J]. Journal of Agricultural Mechanization Research, 2023, 45(9): 150–154.
    [4] 杨雪亚, 沈显照, 王贤翔. 低空反无雷达的高精度测速方法及波形设计 [J]. 火控雷达技术, 2022, 51(3): 36–39.

    YANG X Y, SHEN X Z, WANG X X. High-precision speed measurement and waveform design of low-altitude anti-UAV radar [J]. Fire Control Radar Technology, 2022, 51(3): 36–39.
    [5] 韩超, 李欣伟, 王凯鑫, 等. 激光测速雷达的性能对比分析 [J]. 测控技术, 2022, 41(9): 90–95.

    HAN C, LI X W, WANG K X, et al. Performance comparison and analysis of laser velocimetry radar [J]. Measurement and Control Technology, 2022, 41(9): 90–95.
    [6] 刘琳, 王彩霞, 田杨萌, 等. 多普勒效应对雷电源辐射定位的影响关系研究 [J]. 电波科学学报, 2022, 37(6): 1049–1056.

    LIU L, WANG C X, TIAN Y M, et al. Study on the influence of Doppler effect on the radiation localization of lightning sources [J]. Chinese Journal of Radio Science, 2022, 37(6): 1049–1056.
    [7] 谢孟龙. 机动车雷达测速仪检定方法探究及不确定度评定 [J]. 计量与测试技术, 2023, 50(1): 108–111.

    XIE M L. Research on verification method and uncertainty evaluation of vehicle radar velocimeter [J]. Metrology & Measurement Technique, 2023, 50(1): 108–111.
    [8] 陈略, 李文潇, 李海涛, 等. 嫦娥五号探测器精细开环测速及空间引力红移验证设计分析 [J]. 中国科学: 物理学 力学 天文学, 2023, 53(3): 122–132.

    CHEN L, LI W X, LI H T, et al. High-accuracy open-loop velocity measurement and gravitational redshift verification design analysis based on the Chang’E-5 probe [J]. Scientia Sinica Physica: Mechanica & Astronomica, 2023, 53(3): 122–132.
    [9] 王泽杰, 王潜心, 商天文. 基于北斗三号卫星非差多普勒观测信号的优化测速模型 [J]. 电信科学, 2021, 37(12): 42–50.

    WANG Z J, WANG Q X, SHANG T W. Optimal velocity estimation model based on non-differential Doppler observations from BDS-3 satellites [J]. Telecommunications Science, 2021, 37(12): 42–50.
    [10] 刘天琦, 张浩, 焦名. 结合测速测距的卫星定位法研究 [J]. 铁路通信信号工程技术, 2022, 19(3): 17–20, 43.

    LIU T Q, ZHANG H, JIAO M. Satellite positioning method in combination with speed and distance measurement [J]. Railway Signalling & Communication Engineering, 2022, 19(3): 17–20, 43.
    [11] 张伟. 天文光谱测速导航技术与应用思考 [J]. 导航与控制, 2020, 19(Suppl 1): 64–73.

    ZHANG W. A study of the navigation technology and application based on astronomical spectral velocity measurement [J]. Navigation and Control, 2020, 19(Suppl 1): 64–73.
    [12] 刘健. 皮托管流量计在海洋平台天然气计量中的应用 [J]. 石油化工自动化, 2022, 58(2): 84–87.

    LIU J. Application of pitot tube flowmeter in natural gas metering on offshore platform [J]. Automation in Petro-Chemical Industry, 2022, 58(2): 84–87.
    [13] 经福谦, 陈俊祥. 动高压原理与技术 [M]. 北京: 国防教育出版社, 2006: 34.

    JING F Q, CHEN J X. Dynamic high-pressure generation principle and related technologies [M]. Beijing: National Defense Education Press, 2006: 34.
    [14] MITCHELL A C, NELLIS W J . Diagnostic system of the Lawrence Livermore National Laboratory two-stage light-gas gun [J]. Review of Scientific Instruments, 1981, 52(3): 347–359. doi: 10.1063/1.1136602
    [15] KAWAI N, TSURUI K, HASEGAWA S, et al. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris [J]. Review of Scientific Instruments, 2010, 81(11): 115105. doi: 10.1063/1.3498896
    [16] 廖文强, 孙燕云, 吴浪, 等. 基于电探针及光探针的冲击加载时刻测量技术 [J]. 电子制作, 2022, 30(20): 90–92, 96.

    LIAO W Q, SUN Y Y, WU L. Impact loading time measurement technology based on electric probe and optical probe [J]. Practical Electronics, 2022, 30(20): 90–92, 96.
    [17] 陈源福. 冲击加载下苯的透光特性 [J]. 吉林化工学院学报, 2022, 39(7): 91–93.

    CHEN Y F. Light transmission characteristics of benzene under shock compression [J]. Journal of Jilin Institute of Chemical Technology, 2022, 39(7): 91–93.
    [18] 孙雨荟, 赵传, 王韫泽, 等. 冲击加载下50SiMnVB钢微观断裂机理试验研究 [J]. 兵器装备工程学报, 2022, 43(11): 1–8.

    SUN Y H, ZHAO C, WANG Y Z, et al. Mechanism of microscopic fracture of 50SiMnVB steel under impact loading [J]. Journal of Ordnance Equipment Engineering, 2022, 43(11): 1–8.
    [19] ROCHON P, GAUTHIER N. Induction transducer for recording the velocity of a glider on an air track [J]. American Journal of Physics, 1982, 50(1): 84–85. doi: 10.1119/1.12992
    [20] CARPENA P. Velocity measurements through magnetic induction [J]. American Journal of Physics, 1997, 65(2): 135–140. doi: 10.1119/1.18526
    [21] FERENCE J R M, LEMON H B, STEPHENSON R J. Analytical experimental physics [M]. Chicago, USA: University of Chicago Press, 1956.
    [22] 向永江. 全光纤激光多普勒测速技术的研究 [J]. 光学学报, 1998, 12(11): 1053–1056.

    XIANG Y J. Investigation of all fiber laser Doppler velocimetry [J]. Acta Optica Sinica, 1998, 12(11): 1053–1056.
    [23] 谭朝勇, 叶欣, 胡永明. 全光纤多普勒测速系统的研究 [J]. 光电技术应用, 2011, 32(2): 276–279.

    TAN C Y, YE X, HU Y M. Study on all fiber-optic laser Doppler velocimeter [J]. Semiconductor Optoelectronics, 2011, 32(2): 276–279.
    [24] 胡昌明, 王翔, 刘仓理, 等. 阵列DPS测量技术在材料动态力学性能研究中的应用 [J]. 爆炸与冲击, 2010, 30(1): 105–108.

    HU C M, WANG X, LIU C L. Applications of DPS arrays testing technique to dynamic properties study of materials [J]. Journal of Experimental Mechanics, 2010, 30(1): 105–108.
    [25] 高春峰, 魏国, 王琦, 等. 一维激光多普勒测速仪/单轴旋转惯导组合车载高程测量方法 [J]. 红外与激光工程, 2022, 51(12): 9–17.

    GAO C F, WEI G, WANG Q, et al. Height measurement method based on one-dimensional laser Doppler velocimeter and integrated navigation system of single-axis rotation inertial navigation system [J]. Infrared and Laser Engineering, 2022, 51(12): 9–17.
    [26] 万镇宇. 基于结构光场的多普勒测速研究 [D]. 武汉: 华中科技大学, 2023.

    WAN Z Y. Research on Doppler velocimetry based on structured light field [D]. Wuhan: Huazhong University of Science and Technology, 2023.
    [27] 王金贵. 气体炮原理与技术 [M]. 北京: 国防教育出版社, 1999: 38.

    WANG J G. Principle and technology of gas gun [M]. Beijing: National Defense Education Press, 1999: 38.
    [28] FOUCAULT M L. Physical demonstration of the rotation of the Earth by means of the pen dulum [J]. Journal of the Franklin Institute, 1851, 51(5): 350–353.
    [29] KONDO K I, SAWAOKA A, SAITO S. Magnetoflyer method for measuring gas-gun projectile velocities [J]. Review of Scientific Instruments, 1977, 48(12): 1581–1582. doi: 10.1063/1.1134948
    [30] MOODY R L, KONRAD C H. Magnetic induction system for two-stage gun projectile velocity measurements: SAND 84-0638 [R]. Albuquerque, NM, USA: Sandia National Laboratories, 1984.
    [31] 施尚春, 陈攀森, 黄跃. 高速弹丸的磁感应测速方法 [J]. 高压物理学报, 1991, 5(3): 205–214.

    SHI S C, CHEN P S, HUANG Y. Velocity measurement of magnet induced system for projectile [J]. Chinese Journal of High Pressure Physics, 1991, 5(3): 205–214.
    [32] 张修路, 齐少鹏, 张智, 等. 超高速加载下电磁感应测速的多物理场有限元模拟 [J]. 科技资讯, 2017, 15(32): 1–6.

    ZHANG X L, QI S P, ZHANG Z, et al. Multi-physical finite element simulation of electromagnetic induction velocity measurement under ultra-high speed loading [J]. Science & Technology Information, 2017, 15(32): 1–6.
    [33] ROCHA T J, RAMOS H G, RIBEIRO A L, et al. Magnetic sensors assessment in velocity induced eddy current testing [J]. Sensors and Actuators A: Physical, 2015, 228: 55–61. doi: 10.1016/j.sna.2015.02.004
    [34] RAO B P C. Eddy current testing: basics [J]. Journal of Non Destructive Testing & Evaluation, 2011, 10: 7–16.
    [35] HE Y, LUO F, PAN M, et al. Pulsed eddy current technique for defect detection in aircraft riveted structures [J]. NDT & E International, 2010, 43(2): 176–181.
    [36] DOGARU T, SMITH S T. Giant magnetoresistance-based eddy-current sensor [J]. IEEE Transactions on Magnetics, 2001, 37(5): 3831–3838. doi: 10.1109/20.952754
    [37] RIPKA P, VOPÁLENSKÝ M, PLATIL A, et al. AMR magnetometer [J]. Journal of Magnetism and Magnetic Materials, 2003, 254/255: 639–641.
    [38] RIBEIRO A L, RAMOS H G. Inductive probe for flaw detection in non-magnetic metallic plates using eddy currents [C]//2008 IEEE Instrumentation and Measurement Technology Conference. Victoria, BC, Canada, 2008: 1447−1451.
    [39] POSTOLACHE, RAMOS H G, RIBEIRO A L. Detection and characterization of defects using GMR probes and artificial neural networks [J]. Computer Standards & Interfaces, 2011, 33(2): 191–200.
    [40] JIAO S, CHENG L, LI X, et al. Monitoring fatigue cracks of a metal structure using an eddy current sensor [J]. EURASIP Journal on Wireless Communications and Networking, 2016: 188.
    [41] 郭硕鸿. 电动力学 [M]. 北京: 高等教育出版社, 1997.

    GUO S H. Electrodynamics [M]. Beijing: China Higher Education Press, 1997.
    [42] 吴桔生. 电涡流技术与运用 [M]. 长沙: 中南大学出版社, 2014.

    WU J S. Eddy current technology and application [M]. Changsha: Central South University Press, 2014.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  47
  • PDF下载量:  22
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-08-29
  • 网络出版日期:  2023-12-06
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回