基于正交试验法的气泡帷幕削波特性研究

杜明燃 陈宇航 陆少锋 梁进 李基锐 王尹军 王天照 陈智凡

杜明燃, 陈宇航, 陆少锋, 梁进, 李基锐, 王尹军, 王天照, 陈智凡. 基于正交试验法的气泡帷幕削波特性研究[J]. 高压物理学报, 2023, 37(6): 065302. doi: 10.11858/gywlxb.20230684
引用本文: 杜明燃, 陈宇航, 陆少锋, 梁进, 李基锐, 王尹军, 王天照, 陈智凡. 基于正交试验法的气泡帷幕削波特性研究[J]. 高压物理学报, 2023, 37(6): 065302. doi: 10.11858/gywlxb.20230684
DU Mingran, CHEN Yuhang, LU Shaofeng, LIANG Jin, LI Jirui, WANG Yinjun, WANG Tianzhao, CHEN Zhifan. Bubble Curtain Clipping Characteristics Based on Orthogonal Test Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065302. doi: 10.11858/gywlxb.20230684
Citation: DU Mingran, CHEN Yuhang, LU Shaofeng, LIANG Jin, LI Jirui, WANG Yinjun, WANG Tianzhao, CHEN Zhifan. Bubble Curtain Clipping Characteristics Based on Orthogonal Test Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065302. doi: 10.11858/gywlxb.20230684

基于正交试验法的气泡帷幕削波特性研究

doi: 10.11858/gywlxb.20230684
基金项目: 安徽省高校科学研究项目(KJ2021A0431);广西重点研发计划(桂科AB22035001);安徽省自然科学基金(1908085QA33);安徽理工大学引进人才科研启动基金(11881)
详细信息
    作者简介:

    杜明燃(1987-),男,博士,副教授,主要从事炸药性能和爆破技术研究. E-mail:dumingranaust@163.com

  • 中图分类号: O389; TD235

Bubble Curtain Clipping Characteristics Based on Orthogonal Test Method

  • 摘要: 气泡帷幕削波技术的影响因素众多。为了得到气泡帷幕在实际工程应用中的最佳组合方案,利用AUTODYN软件设计3因素3水平正交试验,以冲击波峰值压力的平均削减率作为评价指标,研究了气泡帷幕层数、气泡帷幕爆心距和药包深度对气泡帷幕削波效果的影响和敏感性。结果表明:气泡帷幕的削波能力存在极大值,此后继续增加气泡帷幕层数反而会出现负效应;气泡帷幕层数对气泡帷幕削波效应的影响最大,药包深度次之,气泡帷幕爆心距的影响最小;气泡帷幕爆心距越小,药包深度越大,气泡帷幕的削波效果越好;气泡帷幕层数为2层,气泡帷幕爆心距为1 m,药包深度为10.5 m时,削波效果最好。

     

  • 图  数值计算模型示意图

    Figure  1.  Schematic diagram of the numerical simulation model

    图  气泡帷幕试验布局

    Figure  2.  Layout of the bubble curtain test

    图  设置1层气泡帷幕时测点C1C2处的压力时程曲线

    Figure  3.  Shock wave pressure-time curves at measurement points C1 and C2 for one layer of bubble curtain

    图  无气泡帷幕时冲击波压力时程曲线

    Figure  4.  Time course curves of shock wave pressure without bubble curtain

    图  有气泡帷幕时的冲击波压力时程曲线

    Figure  5.  Time course curves of shock wave pressure with bubble curtain

    图  水平与指标的关系

    Figure  6.  Relationship between level and indicators

    表  1  炸药的材料参数

    Table  1.   Material parameters of explosive

    ρ/(g·cm−3)D/(km·s−1)pC-J/GPaA/GPaB/GPaR1R2ωE/(kJ·g−1)
    1.304.59.80214.40.1824.150.950.154.19
    下载: 导出CSV

    表  2  水的材料参数

    Table  2.   Material parameters of water

    ρ/(g·cm−3)A1/GPaA2/GPaA3/GPaB0B1T1/GPaT2/GPaω
    1.0002.29.5414.570.280.282.200.150
    下载: 导出CSV

    表  3  不同气泡帷幕层数下水下爆炸冲击波峰值压力

    Table  3.   Peak pressure of underwater blast shock wave for different bubble curtain layers

    Test No. N On-site test Simulation
    pmax/MPa δ/% pmax/MPa δ/%
    C1 C2 C1 C2
    1 1 1.883 0.154 91.82 1.750 0.291 83.37
    2 1 1.789 0.228 87.26 1.750 0.291 83.37
    3 2 1.675 0.157 90.63 1.750 0.116 93.37
    4 2 1.486 0.108 92.73 1.750 0.116 93.37
    5 3 1.862 0.247 86.73 1.750 0.248 85.83
    6 3 1.764 0.196 88.89 1.750 0.248 85.83
    下载: 导出CSV

    表  4  正交试验设计因素和水平

    Table  4.   Orthogonal test design factors and levels

    LevelFactor
    ND/mH/m
    1112.5
    2236.5
    33510.5
    下载: 导出CSV

    表  5  正交试验方案

    Table  5.   Orthogonal test protocols

    No. Level Test programme No. Level Test programme
    N D H N D H
    1 1 1 1 A1B1C1 6 2 3 1 A2B3C1
    2 1 2 2 A1B2C2 7 3 1 3 A3B1C3
    3 1 3 3 A1B3C3 8 3 2 1 A3B2C1
    4 2 1 2 A2B1C2 9 3 3 2 A3B3C2
    5 2 2 3 A2B2C3
    下载: 导出CSV

    表  6  空白对照组数据

    Table  6.   Data of blank control group

    No. H/m Point pmax/MPa tp/ms No. H/m Point pmax/MPa tp/ms
    1 2.5 1 4.108 3.952 3 10.5 1 4.187 3.954
    2 2.456 6.001 2 2.533 6.001
    3 1.531 8.006 3 1.708 8.002
    2 6.5 1 4.148 3.954
    2 2.494 6.002
    3 1.688 8.016
    下载: 导出CSV

    表  7  正交试验数据

    Table  7.   Orthogonal test data

    Test No.ProgrammeND/mH/mpmax/MPaδ/%
    Point 1Point 2Point 3
    1A1B1C1112.50.3410.3140.29586.55
    2A1B2C2136.50.3200.2780.26188.56
    3A1B3C31510.50.3550.2860.26488.26
    4A2B1C2216.50.1220.1130.10695.42
    5A2B2C32310.50.1320.1180.10795.31
    6A2B3C1252.50.1460.1210.10994.80
    7A3B1C33110.50.2750.2600.25089.51
    8A3B2C1332.50.3720.3320.30885.77
    9A3B3C2356.50.4120.3050.27487.20
    下载: 导出CSV

    表  8  极差分析结果

    Table  8.   Results of the variance analysis

    FactorK1K2K3k1k2k3R
    N263.37285.53262.4887.7995.1887.497.68
    D271.48269.64270.2690.4989.8890.090.61
    H267.12271.18273.0889.0490.3991.031.99
    下载: 导出CSV

    表  9  方差分析结果

    Table  9.   Results of variance analysis

    Sources of varianceSf$ \bar S $FSignificance-effect
    N113.68256.8438.81Yes
    D3.4821.741.19No
    H6.1823.092.11No
    Error2.9321.46
    Sum126.278
    下载: 导出CSV
  • [1] 高明涛, 李昕, 周晶. 水下钻孔爆破水中冲击波的数值模拟研究 [J]. 水电能源科学, 2009, 27(4): 138–141. doi: 10.3969/j.issn.1000-7709.2009.04.043

    GAO M T, LI X, ZHOU J. Numerical simulation of shock wave in water of underwater drilling blasting [J]. Water Resources and Power, 2009, 27(4): 138–141. doi: 10.3969/j.issn.1000-7709.2009.04.043
    [2] 杨建, 刘静, 张登泰, 等. 气泡帷幕对港口水域爆破波的削弱 [J]. 中国水运, 2020, 20(10): 90–92.

    YANG J, LIU J, ZHANG D T, et al. Weakening of blast waves in port waters by air bubble curtains [J]. China Water Transport, 2020, 20(10): 90–92.
    [3] 司剑峰. 深水钻孔爆破的冲击波衰减规律及防护研究 [D]. 武汉: 武汉科技大学, 2021.

    SI J F. Research on attenuation law of shock wave and protection in deep-water drilling and blasting [D]. Wuhan: Wuhan University of Science and Technology, 2021.
    [4] 俞统昌, 王晓峰, 王建灵. 炸药的水下爆炸冲击波性能 [J]. 含能材料, 2003, 11(4): 182–186. doi: 10.3969/j.issn.1006-9941.2003.04.002

    YU T C, WANG X F, WANG J L. Underwater shockwave performance of explosives [J]. Energetic Materials, 2003, 11(4): 182–186. doi: 10.3969/j.issn.1006-9941.2003.04.002
    [5] 伍俊, 杨益, 庄铁栓. 水中爆炸作用机理及毁伤效应研究综述 [J]. 火炸药学报, 2016, 39(1): 1–13. doi: 10.14077/j.issn.1007-7812.2016.01.001

    WU J, YANG Y, ZHUANG T S. A review of research on action mechanism and damage effect of underwater explosion [J]. Chinese Journal of Explosives & Propellants, 2016, 39(1): 1–13. doi: 10.14077/j.issn.1007-7812.2016.01.001
    [6] 陈岩武, 孙远翔, 王成. 水下爆炸载荷下舰船双层底部结构的毁伤特性 [J]. 兵工学报, 2023, 44(3): 670–681. doi: 10.12382/bgxb.2022.0390

    CHEN Y W, SUN Y X, WANG C. Damage characteristics of ship’s double bottom structure subjected to underwater explosion [J]. Acta Armamentarii, 2023, 44(3): 670–681. doi: 10.12382/bgxb.2022.0390
    [7] 赵为, 梁作民, 郭成喜. 水下近场爆破安全控制 [J]. 水运工程, 2007, 33(9): 159–164. doi: 10.3969/j.issn.1002-4972.2007.09.038

    ZHAO W, LIANG Z M, GUO C X. Safety control of underwater near-site explosion [J]. Port & Waterway Engineering, 2007, 33(9): 159–164. doi: 10.3969/j.issn.1002-4972.2007.09.038
    [8] 张轶凡, 刘亮涛, 王金相, 等. 水下爆炸冲击波和气泡载荷对典型圆柱壳结构的毁伤特性 [J]. 兵工学报, 2023, 44(2): 345–359. doi: 10.12382/bgxb.2021.0598

    ZHANG Y F, LIU L T, WANG J X, et al. Damage characteristics of underwater explosion shock wave and bubble load on typical cylindrical shell structure [J]. Acta Armamentarii, 2023, 44(2): 345–359. doi: 10.12382/bgxb.2021.0598
    [9] 王高辉, 高政, 卢文波, 等. 考虑初始应力的混凝土重力坝水下爆炸毁伤特性研究 [J]. 振动与冲击, 2022, 41(11): 133–140. doi: 10.13465/j.cnki.jvs.2022.11.017

    WANG G H, GAO Z, LU W B, et al. Damage characteristics of underwater explosion of concrete gravity dam considering initial stress [J]. Journal of Vibration and Shock, 2022, 41(11): 133–140. doi: 10.13465/j.cnki.jvs.2022.11.017
    [10] 张志波, 李春军, 李红勇, 等. 气泡帷幕在水下爆破减震工程中的应用 [J]. 爆破, 2003, 20(2): 75–76, 89. doi: 10.3963/j.issn.1001-487X.2003.02.028

    ZHANG Z B, LI C J, LI H Y, et al. Application of air bubble purdah in the damping measure in the underwater blasting [J]. Blasting, 2003, 20(2): 75–76, 89. doi: 10.3963/j.issn.1001-487X.2003.02.028
    [11] 刘欣, 顾文彬, 陈学平. 气泡帷幕对水中冲击波衰减特性的数值模拟研究 [J]. 爆破, 2015, 32(3): 79–84. doi: 10.3963/j.issn.1001-487X.2015.03.014

    LIU X, GU W B, CHEN X P. Numerical simulation study of attenuation characteristics of water shock wave under bubble curtain [J]. Blasting, 2015, 32(3): 79–84. doi: 10.3963/j.issn.1001-487X.2015.03.014
    [12] 胡伟才, 吴立, 舒利, 等. 不同设置方式下气泡帷幕对水中冲击波衰减特性的影响 [J]. 科学技术与工程, 2018, 18(17): 33–38. doi: 10.3969/j.issn.1671-1815.2018.17.006

    HU W C, WU L, SHU L, et al. Influence of water shock wave on attenuation characteristics under bubble curtain with different settings [J]. Science Technology and Engineering, 2018, 18(17): 33–38. doi: 10.3969/j.issn.1671-1815.2018.17.006
    [13] 李泽华, 白春华, 刘庆明, 等. 气泡帷幕减弱水中冲击波强度的研究 [J]. 中国安全科学学报, 1999, 10(5): 72–76. doi: 10.16265/j.cnki.issn1003-3033.1999.05.015

    LI Z H, BAI C H, LIU Q M, et al. Study on weakening the shock wave in water by bubble heavy curtain [J]. China Safety Science Journal, 1999, 10(5): 72–76. doi: 10.16265/j.cnki.issn1003-3033.1999.05.015
    [14] 谢达建, 吴立, 洪江, 等. 气泡帷幕对水下爆破冲击波的削弱作用研究 [J]. 人民长江, 2018, 49(8): 72–77. doi: 10.16232/j.cnki.1001-4179.2018.08.014

    XIE D J, WU L, HONG J, et al. Study on weakening effect of bubble curtain on water shock wave in underwater blasting [J]. Yangtze River, 2018, 49(8): 72–77. doi: 10.16232/j.cnki.1001-4179.2018.08.014
    [15] 陆少锋, 梁进, 覃才勇, 等. 供风量对水下爆炸冲击波气泡帷幕消波效应的影响 [J]. 工程爆破, 2022, 28(5): 143–148. doi: 10.19931/j.EB.20210013

    LU S F, LIANG J, QIN C Y, et al. Influence of air supply rate on wave attenuation effect of bubble curtain for underwater explosion shock wave [J]. Engineering Blasting, 2022, 28(5): 143–148. doi: 10.19931/j.EB.20210013
    [16] 胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究 [J]. 高压物理学报, 2020, 34(1): 015102. doi: 10.11858/gywlxb.20190773

    HU L L, HUANG R Y, LI S C, et al. Shock wave simulation of underwater explosion [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. doi: 10.11858/gywlxb.20190773
    [17] 刘世聪, 王秋生, 娄浩然. 装药深度及空气域尺寸对水下爆炸的影响分析 [J]. 水下无人系统学报, 2019, 27(6): 664–672. doi: 10.11993/j.issn.2096-3920.2019.06.010

    LIU S C, WANG Q S, LOU H R. Effects of charge depth and air domain size on underwater explosion [J]. Journal of Unmanned Undersea Systems, 2019, 27(6): 664–672. doi: 10.11993/j.issn.2096-3920.2019.06.010
    [18] 黄洪, 卢熹, 王健. 柱形装药水下爆炸近场冲击波数值仿真 [J]. 水下无人系统学报, 2021, 29(4): 471–476. doi: 10.11993/j.issn.2096-3920.2021.04.015

    HUANG H, LU X, WANG J. Near field shock wave numerical simulation of cylindrical charge underwater explosion [J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 471–476. doi: 10.11993/j.issn.2096-3920.2021.04.015
    [19] 鲁天龙. 气泡帷幕周围流场运动特性数值模拟研究 [D]. 长沙: 长沙理工大学, 2020.

    LU T L. Numerical simulation of flow field motion characteristics around bubble curtain [D]. Changsha: Changsha University of Technology, 2020.
    [20] 王思, 胡晶, 张雪东, 等. 不同水深水下爆炸数值及离心试验研究 [J]. 哈尔滨工业大学学报, 2020, 52(6): 78–84. doi: 10.11918/202001082

    WANG S, HU J, ZHANG X D, et al. Numerical analysis and centrifugal test of underwater explosion effect at different water depths [J]. Journal of Harbin Institute of Technology, 2020, 52(6): 78–84. doi: 10.11918/202001082
    [21] 盛振新, 刘荣忠, 郭锐. 壳体厚度和爆炸深度对水下爆炸冲击波的影响 [J]. 火炸药学报, 2011, 34(3): 45–47, 64. doi: 10.3969/j.issn.1007-7812.2011.03.012

    SHENG Z X, LIU R Z, GUO R. Effect of shell thickness and explosion depth on underwater explosive shock wave [J]. Chinese Journal of Explosives & Propellants, 2011, 34(3): 45–47, 64. doi: 10.3969/j.issn.1007-7812.2011.03.012
    [22] 陈兴, 周兰伟, 李福明, 等. 爆炸深度对装药水下载荷的影响 [J]. 兵器装备工程学报, 2021, 42(8): 79–84. doi: 10.11809/bqzbgcxb2021.08.013

    CHEN X, ZHOU L W, LI F M, et al. Research on influence of depth of charge on underwater explosion load [J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 79–84. doi: 10.11809/bqzbgcxb2021.08.013
    [23] 尹岳降, 李瑞泽, 陈明, 等. 基于正交试验法的爆破块度分布影响因素敏感性分析 [J]. 爆破, 2019, 36(4): 37–42. doi: 10.3963/j.issn.1001-487X.2019.04.005

    YIN Y J, LI R Z, CHEN M, et al. Sensitivity analysis of influencing factors of blasting fragmentation distribution based on orthogonal experiment method [J]. Blasting, 2019, 36(4): 37–42. doi: 10.3963/j.issn.1001-487X.2019.04.005
    [24] 张世豪, 韩晶, 焦国太, 等. 单个装药混凝土爆破毁伤效果敏感性分析 [J]. 工程爆破, 2014, 20(3): 5–9. doi: 10.3969/j.issn.1006-7051.2014.03.002

    ZHANG S H, HAN J, JIAO G T, et al. Sensitivity analysis of blasting damage effect in concrete based on single charge [J]. Engineering Blasting, 2014, 20(3): 5–9. doi: 10.3969/j.issn.1006-7051.2014.03.002
    [25] 史秀志, 王怀勇, 刘金明, 等. 基于粗糙集的影响爆破振动特征参量因素的敏感性分析 [J]. 爆破器材, 2009, 38(2): 1–4, 7. doi: 10.3969/j.issn.1001-8352.2009.02.001.

    SHI X Z, WANG H Y, LIU J M, et al. Sensitivity analysis of the factors impact of blasting vibration characteristic parameters based on rough set theory [J]. Explosive Materials, 2009, 38(2): 1–4, 7. doi: 10.3969/j.issn.1001-8352.2009.02.001.
    [26] 胡玉林, 姜俊杰, 罗健琛, 等. 基于多因素方差分析探究灌水施肥量对番茄产量的影响 [J]. 浙江农业科学, 2023, 64(5): 1042–1045. doi: 10.16178/j.issn.0528-9017.20230126

    HU Y L, JIANG J J, LUO J C, et al. Exploring the effect of irrigation and fertilizer application on tomato yield based on multi-factor analysis of variance [J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(5): 1042–1045. doi: 10.16178/j.issn.0528-9017.20230126
    [27] 刘世涛, 郝兵元, 杨冉, 等. 基于方差分析法坚硬顶板下矿压显现分析 [J]. 煤炭技术, 2022, 41(7): 20–23. doi: 10.13301/j.cnki.ct.2022.07.005

    LIU S T, HAO B Y, YANG R, et al. Analysis of mineral pressure under rigid top plate based on variance analysis [J]. Coal Technology, 2022, 41(7): 20–23. doi: 10.13301/j.cnki.ct.2022.07.005
    [28] 王志建, 龙顺忠, 李颖宏. 基于正交试验的感应控制参数组合优化 [J]. 浙江大学学报(工学版), 2023, 57(6): 1128–1136. doi: 10.3785/j.issn.1008-973X.2023.06.008

    WANG Z J, LONG S Z, LI Y H. Combination optimization of induction control parameters based on orthogonal test [J]. Journal of Zhejiang University (Engineering Science), 2023, 57(6): 1128–1136. doi: 10.3785/j.issn.1008-973X.2023.06.008
  • 加载中
图(6) / 表(9)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  42
  • PDF下载量:  27
出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2023-07-03
  • 网络出版日期:  2023-11-26
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回