磁驱动样品实验数值模拟研究

阚明先 刘利新 南小龙 计策 何勇 段书超

阚明先, 刘利新, 南小龙, 计策, 何勇, 段书超. 磁驱动样品实验数值模拟研究[J]. 高压物理学报, 2023, 37(6): 062301. doi: 10.11858/gywlxb.20230683
引用本文: 阚明先, 刘利新, 南小龙, 计策, 何勇, 段书超. 磁驱动样品实验数值模拟研究[J]. 高压物理学报, 2023, 37(6): 062301. doi: 10.11858/gywlxb.20230683
KAN Mingxian, LIU Lixin, NAN Xiaolong, JI Ce, HE Yong, DUAN Shuchao. Numerical Simulation of Magnetically Driven Sample Experiment[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 062301. doi: 10.11858/gywlxb.20230683
Citation: KAN Mingxian, LIU Lixin, NAN Xiaolong, JI Ce, HE Yong, DUAN Shuchao. Numerical Simulation of Magnetically Driven Sample Experiment[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 062301. doi: 10.11858/gywlxb.20230683

磁驱动样品实验数值模拟研究

doi: 10.11858/gywlxb.20230683
基金项目: 国家自然科学基金(12075226)
详细信息
    作者简介:

    阚明先(1971-),男,硕士,副研究员,主要从事磁驱动实验理论与数值方法研究. E-mail:kanmx@caep.cn

  • 中图分类号: O361.3

Numerical Simulation of Magnetically Driven Sample Experiment

  • 摘要: 采用二维磁驱动数值模拟程序对磁驱动样品实验进行了模拟研究。数值模拟结果表明,二维磁驱动数值模拟程序模拟的样品/窗口界面速度(或飞片/窗口界面速度)与实验测量速度基本一致。磁驱动样品实验的结构系数与样品材料、阴阳极之间的初始间隙、电极板宽度等负载初始结构相关,不随磁驱动样品实验的演化过程而改变。样品材料不同,结构系数不同。对于同一样品材料,在其他初始条件相同的情况下,电极板越宽,结构系数越大。二维磁驱动数值模拟程序能够正确模拟磁驱动样品实验,是磁驱动样品物性研究的重要工具。

     

  • 图  磁驱动样品实验负载结构示意图

    Figure  1.  Load configuration of magnetically driven sample experiments

    图  Exp1~Exp4的实测电流

    Figure  2.  Measured current for Exp1–Exp4

    图  Exp1的界面速度(f=0.78)

    Figure  3.  Interface’s velocity for Exp1 (f=0.78)

    图  Exp2-bottom的界面速度(f=0.84)

    Figure  4.  Interface’s velocity for Exp2-bottom (f=0.84)

    图  Exp3的界面速度(f=0.85)

    Figure  5.  Interface’s velocity for Exp3 (f=0.85)

    图  Exp4的界面速度(f=0.88)

    Figure  6.  Interface’s velocity for Exp4 (f=0.88)

    表  1  磁驱动样品实验负载参数

    Table  1.   Load parameters for magnetically driven sample experiments

    Exp. No. Sample material δfa/mm δsa/mm δwa/mm δfc/mm δsc/mm δwc/mm g0/mm W/mm
    Exp1-top MgAl 0.970 0 8 0.983 0.565 8 1.200 13
    Exp1-bottom MgAl 0.984 0.968 8 0.988 0.788 8 1.200 13
    Exp2-top Sn 1.000 0.386 8 1.000 0 8 1.200 11
    Exp2-bottom Sn 1.000 0.386 8 1.000 0 8 1.200 11
    Exp3-top Sn 0.993 0.417 8 0.990 0.451 8 1.200 13
    Exp3-bottom Sn 0.993 0 8 0.990 0.643 8 1.200 13
    Exp4-top Sn 0.995 0.433 8 0.998 0.650 8 1.175 15
    Exp4-bottom Sn 0.990 0.817 8 0.991 0 8 1.175 15
    下载: 导出CSV

    表  2  磁驱动样品实验的结构系数

    Table  2.   Structure coefficients of magnetically driven sample experiments

    Exp. No. Sample material δsa/mm δsc/mm g0/mm W/mm f
    Exp1-top MgAl 0 0.565 1.200 13 0.78
    Exp1-bottom MgAl 0.968 0.788 1.200 13 0.78
    Exp2-top Sn 0.386 0 1.200 11 0.84
    Exp2-bottom Sn 0.386 0 1.200 11 0.84
    Exp3-top Sn 0.417 0.451 1.200 13 0.85
    Exp3-bottom Sn 0 0.643 1.200 13 0.85
    Exp4-top Sn 0.433 0.650 1.175 15 0.88
    Exp4-bottom Sn 0.817 0 1.175 15 0.88
    下载: 导出CSV
  • [1] KNUDSON M D, HANSON D L, BAILEY J E, et al. Equation of state measurements in liquid deuterium to 70 GPa [J]. Physical Review Letters, 2001, 87(22): 225501. doi: 10.1103/PhysRevLett.87.225501
    [2] KNUDSON M D, LEMKE R W, HAYES D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique [J]. Journal of Applied Physics, 2003, 94(7): 4420–4431. doi: 10.1063/1.1604967
    [3] KNUDSON M D, HANSON D L, BAILEY J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa [J]. Physical Review Letters, 2003, 90(3): 035505. doi: 10.1103/PhysRevLett.90.035505
    [4] KNUDSON M D, HANSON D L, BAILEY J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques [J]. Physical Review B, 2004, 69(14): 144209. doi: 10.1103/PhysRevB.69.144209
    [5] LEMKE R W, KNUDSON M D, BLISS D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments [J]. Journal of Applied Physics, 2005, 98(7): 073530. doi: 10.1063/1.2084316
    [6] VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading [J]. International Journal of Plasticity, 2009, 25(4): 671–694. doi: 10.1016/j.ijplas.2008.12.003
    [7] REISMAN D B, TOOR A, CAUBLE R C, et al. Magnetically driven isentropic compression experiments on the Z accelerator [J]. Journal of Applied Physics, 2001, 89(3): 1625–1633. doi: 10.1063/1.1337082
    [8] LEMKE R W, KNUDSON M D, HALL C A, et al. Characterization of magnetically accelerated flyer plates [J]. Physics of Plasmas, 2003, 10(4): 1092–1099. doi: 10.1063/1.1554740
    [9] LEMKE R W, KNUDSON M D, DAVIS J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. doi: 10.1016/j.ijimpeng.2010.10.019
    [10] DAVIS J P, BROWN J L, KNUDSON M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: application to tantalum [J]. Journal of Applied Physics, 2014, 116(20): 204903. doi: 10.1063/1.4902863
    [11] KAN M X, ZHANG Z H, XIAO B, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula [J]. High Energy Density Physics, 2018, 26: 38–43. doi: 10.1016/j.hedp.2017.12.002
    [12] 阚明先, 蒋吉昊, 王刚华, 等. 衬套内爆ALE方法二维MHD数值模拟 [J]. 四川大学学报(自然科学版), 2007, 44(1): 91–96. doi: 10.3969/j.issn.0490-6756.2007.01.020

    KAN M X, JIANG J H, WANG G H, et al. ALE simulation of 2D MHD for liner [J]. Journal of Sichuan University (Natural Science Edition), 2007, 44(1): 91–96. doi: 10.3969/j.issn.0490-6756.2007.01.020
    [13] 阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟 [J]. 强激光与粒子束, 2013, 25(8): 2137–2141. doi: 10.3788/HPLPB20132508.2137

    KAN M X, WANG G H, ZHAO H L, et al. Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates [J]. High Power Laser and Particle Beams, 2013, 25(8): 2137–2141. doi: 10.3788/HPLPB20132508.2137
    [14] 杨龙, 李平, 王刚华, 等. 固体套筒内爆非冲击压缩研究 [J]. 高压物理学报, 2016, 30(4): 344–352. doi: 10.11858/gywlxb.2016.04.012

    YANG L, LI P, WANG G H, et al. Research on the shockless compression of the solid liner implosion [J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 344–352. doi: 10.11858/gywlxb.2016.04.012
    [15] 阚明先, 王刚华, 刘利新, 等. 带窗口磁驱动准等熵压缩实验模拟 [J]. 强激光与粒子束, 2021, 33(5): 055001. doi: 10.11884/HPLPB202133.200329

    KAN M X, WANG G H, LIU L X, et al. Simulation of magnetically driven quasi-isentropic compression experiments with windows [J]. High Power Laser and Particle Beams, 2021, 33(5): 055001. doi: 10.11884/HPLPB202133.200329
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  47
  • PDF下载量:  33
出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2023-08-08
  • 网络出版日期:  2023-12-04
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回