多种材质障碍物对甲烷-氢气预混燃气的促爆影响

焦一飞 熊晓曼 任昊 米红甫 何国钦 李品 魏鑫

焦一飞, 熊晓曼, 任昊, 米红甫, 何国钦, 李品, 魏鑫. 多种材质障碍物对甲烷-氢气预混燃气的促爆影响[J]. 高压物理学报, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682
引用本文: 焦一飞, 熊晓曼, 任昊, 米红甫, 何国钦, 李品, 魏鑫. 多种材质障碍物对甲烷-氢气预混燃气的促爆影响[J]. 高压物理学报, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682
JIAO Yifei, XIONG Xiaoman, REN Hao, MI Hongfu, HE Guoqin, LI Pin, WEI Xin. Effect of Various Material Obstacles on the Promoting Explosion of Methane-Hydrogen Premixed Gas[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682
Citation: JIAO Yifei, XIONG Xiaoman, REN Hao, MI Hongfu, HE Guoqin, LI Pin, WEI Xin. Effect of Various Material Obstacles on the Promoting Explosion of Methane-Hydrogen Premixed Gas[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682

多种材质障碍物对甲烷-氢气预混燃气的促爆影响

doi: 10.11858/gywlxb.20230682
基金项目: 国家自然科学基金(52274177)
详细信息
    作者简介:

    焦一飞(1985-),男,硕士,高级工程师,主要从事输变电工程变电土建、消防专项评审及相关研究. E-mail:yifeijiao@hotmail.com

    通讯作者:

    何国钦(2000-),男,硕士研究生,主要从事油气爆炸动力学研究. E-mail:1923715297@qq.com

  • 中图分类号: O389; X932

Effect of Various Material Obstacles on the Promoting Explosion of Methane-Hydrogen Premixed Gas

  • 摘要: 选取3种不同弯曲强度障碍物进行氢气-甲烷混合气体爆炸影响实验研究,以探究不同环境下的促爆危险性。实验过程中采集爆炸管道内火焰图像以及上下游压力。通过分析火焰图像以及爆炸压力数据后发现,爆炸后膨胀燃气推动流场加速在障碍物后方产生涡流,流场在不同材质障碍物后产生不同的涡流强度,导致燃气后期火焰峰值速度差异以及管道内爆炸超压差异。实验证明了促爆强度与障碍物材质的相关性。在本研究中,促爆强度与障碍物弯曲强度成正比,在氢气加入后,燃气基础反应加快,3种材质障碍物管道内爆炸压力峰值开始产生明显差异。通过上述结果可以得出,环境内障碍物以及粗糙壁面会影响燃气促爆效果,由于材料本身特性影响而产生差异,并且这种差异受燃气自身燃烧速率的影响。

     

  • 图  实验系统示意图

    Figure  1.  Schematic diagram of experimental system

    图  3种障碍物:刚性障碍物、柔性障碍物A和柔性障碍物B

    Figure  2.  Three types of obstacle:rigid obstacle,flexible obstacle A and flexible obstacle B

    图  管道内火焰图像($\varphi_{{\mathrm{H}}_2} $=0)

    Figure  3.  Images of flame in pipeline ($\varphi_{{\mathrm{H}}_2} $=0)

    图  管道内火焰图像($\varphi_{{\mathrm{H}}_2} $=10%)

    Figure  4.  Images of flame in pipeline ($\varphi_{{\mathrm{H}}_2} $=10%)

    图  管道内火焰图像($\varphi_{{\mathrm{H}}_2} $=20%)

    Figure  5.  Images of flame in pipeline ($\varphi_{{\mathrm{H}}_2} $=20%)

    图  管道内火焰图像($\varphi_{{\mathrm{H}}_2} $=30%)

    Figure  6.  Images of flame in pipeline ($\varphi_{{\mathrm{H}}_2} $=30%)

    图  火焰锋面速度-位置曲线

    Figure  7.  Curves of flame front velocity-position

    图  火焰锋面的速度-位置曲线

    Figure  8.  Curves of flame front velocity-position

    图  $\varphi_{{\mathrm{H}}_2} $=0时管道内上游的压力-时间曲线

    Figure  9.  Pipeline upstream pressure-time curves of $\varphi_{{\mathrm{H}}_2} $=0

    图  10  $\varphi_{{\mathrm{H}}_2} $=0时管道内下游压力-时间曲线

    Figure  10.  Pipeline downstream pressure-time curves of $\varphi_{{\mathrm{H}}_2} $=0

    图  11  管道内上游的压力峰值-氢气体积分数曲线

    Figure  11.  Upstream pressure peak-hydrogen volume fraction curves in pipeline

    图  12  管道内下游的压力峰值-氢气体积分数曲线

    Figure  12.  Downstream pressure peak-hydrogen volume fraction curves in pipeline

    表  1  预混气体的组分

    Table  1.   Premixed gas components

    ${\varphi _{{{\mathrm{H}}_2}}} $/% ${\varPhi _{{{\mathrm{H}}_2}}} $/% ${\varPhi _{{{\mathrm{CH}}_4}}} $/% $\varPhi _{{\mathrm{Air}}}$/%
    0 0 9.50 90.50
    10 1.02 9.18 89.80
    20 2.20 8.80 89.00
    30 3.58 8.53 88.07
    下载: 导出CSV

    表  2  障碍物参数

    Table  2.   Obstacle parameter

    ObstacleMaterialDimensionsMean density/
    (g·cm−3)
    Average elastic modulus/MPa
    Rigid obstaclePolymethyl methacrylate100 mm×10 mm
    ×
    30 mm
    1.1902800.0
    Flexible obstacle AFoamed silicone gel1.92031.3
    Flexible obstacle BPolyurethane foam0.6997.4
    下载: 导出CSV
  • [1] STARR A, LEE J, NG H D. Detonation limits in rough walled tubes [J]. Proceedings of the Combustion Institute, 2015, 35(2): 1989–1996. doi: 10.1016/j.proci.2014.06.130
    [2] ShCHELKIN K I, TROSHIN Y K. Non-stationary phenomena in the gaseous detonation front [J]. Combustion and Flame, 1963, 7: 143–151. doi: 10.1016/0010-2180(63)90172-X
    [3] SHCHELKIN K I. Instability of combustion and detonation of gases [J]. Soviet Physics Uspekhi, 1966, 8(5): 780–797. doi: 10.1070/PU1966v008n05ABEH003038
    [4] MOEN I O, DONATO M, KNYSTAUTAS R, et al. Flame acceleration due to turbulence produced by obstacles [J]. Combustion and Flame, 1980, 39(1): 21–32. doi: 10.1016/0010-2180(80)90003-6
    [5] NA’INNA A M, PHYLAKTOU H N, ANDREWS G E. The acceleration of flames in tube explosions with two obstacles as a function of the obstacle separation distance [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1597–1603. doi: 10.1016/j.jlp.2013.08.003
    [6] FAIRWEATHER M, HARGRAVE G K, IBRAHIM S S, et al. Studies of premixed flame propagation in explosion tubes [J]. Combustion and Flame, 1999, 116(4): 504–518. doi: 10.1016/S0010-2180(98)00055-8
    [7] YU M G, ZHENG K, CHU T K. Gas explosion flame propagation over various hollow-square obstacles [J]. Journal of Natural Gas Science and Engineering, 2016, 30: 221–227. doi: 10.1016/j.jngse.2016.02.009
    [8] WEN X P, YU M G, JI W T, et al. Methane-air explosion characteristics with different obstacle configurations [J]. International Journal of Mining Science and Technology, 2015, 25(2): 213–218. doi: 10.1016/j.ijmst.2015.02.008
    [9] WEN X P, YU M G, LIU Z C, et al. Large eddy simulation of methane-air deflagration in an obstructed chamber using different combustion models [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(4): 730–738. doi: 10.1016/j.jlp.2012.04.008
    [10] MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions [J]. Experimental Thermal and Fluid Science, 2000, 21(1/2/3): 109–106. doi: 10.1016/S0894-1777(99)00060-6
    [11] JOHANSEN C T, CICCARELLI G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 571–585. doi: 10.1016/j.jlp.2012.12.005
    [12] JOHANSEN C T, CICCARELLI G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel [J]. Combustion and Flame, 2009, 156(2): 405–416. doi: 10.1016/j.combustflame.2008.07.010
    [13] CICCARELLI G, JOHANSEN R T, PARRAVANI R. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. doi: 10.1016/j.combustflame.2010.05.003
    [14] SALAMANDRA G D, BAZHENOVA T V, NABOKO I M. Formation of detonation wave during combustion of gas in combustion tube [J]. Symposium (International) on Combustion, 1958, 7(1): 851–855. doi: 10.1016/S0082-0784(58)80128-9
    [15] ZHANG B, LIU H, LI Y C. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures [J]. Fuel, 2019, 253: 305–310. doi: 10.1016/j.fuel.2019.05.006
    [16] SULAIMAN S Z, KASMANI R M, MUSTAFA A, et al. Effect of obstacle on deflagration to detonation transition (DDT) in closed pipe or channel-an overview [J]. Jurnal Teknologi, 2013, 66(1): 49–52. doi: 10.11113/jt.v66.1326
    [17] OGAWA T, GAMEZO V N, ORAN E S. Flame acceleration and transition to detonation in an array of square obstacles [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 355–362. doi: 10.1016/j.jlp.2011.12.009
    [18] ZHANG B, LIU H, YAN B J. Investigation on the detonation propagation limit criterion for methane-oxygen mixtures in tubes with different scales [J]. Fuel, 2019, 239: 617–622. doi: 10.1016/j.fuel.2018.11.062
    [19] BANG B H, AHN C S, KIM Y T, et al. Deflagration-to-detonation transition in pipes: the analytical theory [J]. Applied Mathematical Modelling, 2019, 66: 332–343. doi: 10.1016/j.apm.2018.09.023
    [20] KIVERIN A D, YAKOVENKO I S. Estimation of critical conditions for deflagration-to-detonation transition in obstructed channels filled with gaseous mixtures [J]. Mathematical Modelling of Natural Phenomena, 2018, 13(6): 54. doi: 10.1051/mmnp/2018071
    [21] COATES A M, MATHIAS D L, CANTWELL B J. Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen-air mixture [J]. Combustion and Flame, 2019, 209: 278–290. doi: 10.1016/j.combustflame.2019.07.044
    [22] LEAL C A, SANTIAGO G F. Do tree belts increase risk of explosion for LPG spheres? [J]. Journal of Loss Prevention in the Process Industries, 2004, 17(3): 217–224. doi: 10.1016/j.jlp.2004.02.003
    [23] BAKKE J R, WINGERDEN K V, HOORELBEKE P, et al. A study on the effect of trees on gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 878–884. doi: 10.1016/j.jlp.2010.08.007
    [24] LI Q, LU S X, XU M J, et al. Comparison of flame propagation in a tube with a flexible/rigid obstacle [J]. Energy & Fuels, 2016, 30(10): 8720–8726. doi: 10.1021/acs.energyfuels.6b01594
    [25] LI Q, CICCARELLI G, SUN X X, et al. Flame propagation across a flexible obstacle in a square cross-section channel [J]. International Journal of Hydrogen Energy, 2018, 43(36): 17480–17491. doi: 10.1016/j.ijhydene.2018.07.077
    [26] LI Q, SUN X X, WANG X, et al. Experimental study of flame propagation across flexible obstacles in a square cross-section channel [J]. International Journal of Hydrogen Energy, 2019, 44(7): 3944–3952. doi: 10.1016/j.ijhydene.2018.12.085
    [27] 李权. 管道内障碍物对氢-空气预混火焰传播动力学影响研究 [D]. 合肥: 中国科学技术大学, 2019.
    [28] YU M G, ZHENG K, ZHENG L G, et al. Effects of hydrogen addition on propagation characteristics of premixed methane/air flames [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 1–9. doi: 10.1016/j.jlp.2015.01.017
    [29] YU S W, DUAN Y L, LONG F Y, et al. The influence of flexible/rigid obstacle on flame propagation and blast injuries risk in gas explosion [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(2): 4520–4536.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  29
  • PDF下载量:  24
出版历程
  • 收稿日期:  2023-06-16
  • 修回日期:  2023-08-28
  • 录用日期:  2023-08-28
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-02-05

目录

    /

    返回文章
    返回