圆柱形障碍物对2H2+O2+nAr预混气体的再起爆实验研究

刘虎 李权 吕兆文 王昌建 魏臻 孙昊丞

刘虎, 李权, 吕兆文, 王昌建, 魏臻, 孙昊丞. 圆柱形障碍物对2H2+O2+nAr预混气体的再起爆实验研究[J]. 高压物理学报, 2023, 37(5): 055202. doi: 10.11858/gywlxb.20230672
引用本文: 刘虎, 李权, 吕兆文, 王昌建, 魏臻, 孙昊丞. 圆柱形障碍物对2H2+O2+nAr预混气体的再起爆实验研究[J]. 高压物理学报, 2023, 37(5): 055202. doi: 10.11858/gywlxb.20230672
LIU Hu, LI Quan, LV Zhaowen, WANG Changjian, WEI Zhen, SUN Haocheng. Experimental Study on Re-initiation of 2H2+O2+nAr Premixed Gas by Cylindrical Obstacle[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055202. doi: 10.11858/gywlxb.20230672
Citation: LIU Hu, LI Quan, LV Zhaowen, WANG Changjian, WEI Zhen, SUN Haocheng. Experimental Study on Re-initiation of 2H2+O2+nAr Premixed Gas by Cylindrical Obstacle[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055202. doi: 10.11858/gywlxb.20230672

圆柱形障碍物对2H2+O2+nAr预混气体的再起爆实验研究

doi: 10.11858/gywlxb.20230672
基金项目: 国家自然科学基金(12102117);中国博士后科学基金(2021M690848);安徽省重点研究与开发计划项目(2022h11020013)
详细信息
    作者简介:

    刘 虎(1998-),男,硕士研究生,主要从事气体爆轰研究.E-mail:2021110590@mail.hfut.edu.cn

    通讯作者:

    李 权(1991-),男,博士,副教授,主要从事气相爆轰传播动力学研究. E-mail:quanli@hfut.edu.cn

  • 中图分类号: O383

Experimental Study on Re-initiation of 2H2+O2+nAr Premixed Gas by Cylindrical Obstacle

  • 摘要: 开展了不同反应活性的2H2+O2+nAr气相爆轰波与圆柱形障碍物相互作用的实验研究。通过在管道顶部布置压电式压力传感器记录压力到达时间,并以此计算爆轰波传播速度。采用纹影技术和烟迹法记录爆轰破坏到再起爆全过程的波系及胞格结构。结果表明:爆轰波在障碍物上游接触障碍物时会发生反射;越过障碍物后,在障碍物下游会发生衍射。爆轰波越过障碍物时,受障碍物尾部膨胀波的影响,爆轰波衰减解耦,但随着从圆柱形障碍物两侧绕过的衍射激波在障碍物后轴线和管道中心轴线处碰撞,继而发生马赫反射以及入射激波与下游管道壁面碰撞发生马赫反射,完成再起爆过程。直径较小的障碍物造成的爆轰波能量损失较少,其胞格爆轰波的再起爆距离随障碍物直径的减小而缩短。针对不同直径障碍物的实验结果均表明,随着初始压力升高,预混气体反应活性增加,爆轰的自持稳定性增强,从而削弱了障碍物几何尺寸的影响,有利于减弱爆轰的衰减并缩短再起爆距离。在所研究的障碍物几何尺寸下,通过测量爆轰再起爆距离,建立了不同比例Ar稀释下的2H2+O2在圆柱形障碍物后的再起爆距离与圆柱垂直间距及胞格尺寸的关系。

     

  • 图  实验系统装置示意图

    Figure  1.  Schematic diagram of experimental facilities

    图  不同直径障碍物下的上、下游平均速度与初始压力的关系

    Figure  2.  Upstream and downstream average velocity versus initial pressure in the cases of various diameter obstacles

    图  障碍物直径d=17.5 mm时快速火焰在不同初始压力下的传播烟迹

    Figure  3.  Smoked foils of the propagation pattern of fast flame at different initial pressures at obstacle diameter d=17.5 mm

    图  障碍物直径d=17.5 mm、不同初始压力下压力传感器P1、P2、P3、P4处的压力曲线

    Figure  4.  Pressure profiles at pressure sensor P1, P2, P3, P4 under different initial pressures at obstacle diameter of 17.5 mm

    图  快速火焰在不同直径障碍物、不同初始压力下的传播烟迹

    Figure  5.  Smoked foils of the propagation pattern of fast flame in obstacles with different diameters and different initial pressures

    图  前导激波、CJ爆轰撞击直径d=17.5 mm的圆柱形障碍物时下游纹影照片

    Figure  6.  Schlieren shots of leading shock or CJ detonation colliding with the cylindrical obstacle diameter of 17.5 mm

    图  入射爆轰波与柱形障碍物碰撞结构示意图

    Figure  7.  Schematic diagram of the collision structure of the incident detonation and the cylindrical obstacle

    图  障碍物直径d=17.5 mm时不同初始压力下再起爆胞格图像

    Figure  8.  Smoked re-initiation foils downstream of the cylindrical obstacle with the diameter of 17.5 mm under different initial pressures

    图  越过不同尺寸圆柱形障碍物后2H2+O2Lre/Dh/λ的关系

    Figure  9.  Relationship between the Lre/D and h/λ of 2H2+O2 after crossing cylindrical obstacles of different sizes

    图  10  障碍物直径d=17.5 mm时Ar对再起爆距离的影响

    Figure  10.  Effect of Ar on the re-initiation distance with the obstacle diameter of 17.5 mm

  • [1] 姜宗林, 滕宏辉, 刘云峰. 气相爆轰物理的若干研究进展 [J]. 力学进展, 2012, 42(2): 129–140. doi: 10.6052/1000-0992-2012-2-20120202

    JIANG Z L, TENG H H, LIU Y F. Some research progress on gaseous detonation physics [J]. Advances in Mechanics, 2012, 42(2): 129–140. doi: 10.6052/1000-0992-2012-2-20120202
    [2] 张静雯, 彭澳, 陈先锋, 等. 扰动作用下爆轰形成机理 [J]. 高压物理学报, 2022, 36(6): 062303.

    ZHANG J W, PENG A, CHEN X F, et al. Mechanisms of detonation initiation under the effect of perturbation [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062303.
    [3] 韩文虎, 张博, 王成. 气相爆轰波起爆与传播机理研究进展 [J]. 爆炸与冲击, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398

    HAN W H, ZHANG B, WANG C. Progress in studying mechanisms of initiation and propagation for gaseous detonations [J]. Explosion and Shock Waves, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398
    [4] 王昌建, 徐胜利, 费立森. 气相爆轰波绕射流场显示研究 [J]. 爆炸与冲击, 2006, 26(1): 27–32. doi: 10.3321/j.issn:1001-1455.2006.01.005

    WANG C J, XU S L, FEI L S. Flow field visualization for gaseous detonation diffractionexperiments [J]. Explosion and Shock Waves, 2006, 26(1): 27–32. doi: 10.3321/j.issn:1001-1455.2006.01.005
    [5] SHI X Y, PAN J F, JIANG C, et al. Effect of obstacles on the detonation diffraction and subsequent re-initiation [J]. International Journal of Hydrogen Energy, 2022, 47(10): 6936–6954. doi: 10.1016/j.ijhydene.2021.12.026
    [6] 马秋菊, 邵俊程, 王众山, 等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究 [J]. 高压物理学报, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803

    MA Q J, SHAO J C, WANG Z S, et al. Experimental study of the hydrogen proportion and ignition energy effects on the CH4-H2 mixture explosion intensity [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803
    [7] 倪靖, 潘剑锋, 姜超, 等. 掺氢比对甲烷-氧气爆轰特性的影响 [J]. 爆炸与冲击, 2020, 40(4): 042102. doi: 10.11883/bzycj-2019-0237

    NI J, PAN J F, JIANG C, et al. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas [J]. Explosion and Shock Waves, 2020, 40(4): 042102. doi: 10.11883/bzycj-2019-0237
    [8] 赵焕娟, 刘婧, 周冬雷, 等. 多孔材料对氢气爆轰的抑制作用 [J]. 化工学报, 2023, 74(2): 968–976.

    ZHAO H J, LIU J, ZHOU D L, et al. Inhibition effect of porous materials on hydrogen detonation [J]. CIESC Journal, 2023, 74(2): 968–976.
    [9] 雷明川, 喻健良, 闫兴清, 等. 惰性气体对氢气/空气爆轰传播的抑制作用 [J]. 化工学报, 2022, 73(10): 4754–4761.

    LEI M C, YU J L, YAN X Q, et al. Inhibition of hydrogen/air detonation propagation by inert gases [J]. CIESC Journal, 2022, 73(10): 4754–4761.
    [10] PENG H, LIU W, LIU S, et al. Experimental investigations on ethylene-air continuous rotating detonation wave in the hollow chamber with laval nozzle [J]. Acta Astronaut, 2018, 151: 137–145. doi: 10.1016/j.actaastro.2018.06.025
    [11] 贺顺江, 任会兰, 李健. 环形通道内爆轰波的起爆机制 [J]. 高压物理学报, 2023, 37(1): 015202.

    HE S J, REN H L, LI J. Initiation mechanism of detonation wave in an annular channel [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015202.
    [12] 李红宾, 李建玲, 熊姹, 等. 超音速来流中爆轰波衍射和二次起爆过程研究 [J]. 爆炸与冲击, 2019, 39(4): 041401.

    LI H B, LI J L, XIONG C, et al. Numerical investigation on detonation diffraction and re-initiation processes in a supersonic inflow [J]. Explosion and Shock Waves, 2019, 39(4): 041401.
    [13] 刘曦, 李健. 楔面角度扰动对斜爆轰结构的影响研究 [J]. 北京理工大学学报, 2022, 42(9): 891–899.

    LIU X, LI J. Influence of wedge angle disturbance on the structure of oblique detonation [J]. Transactions of Beijing Institute of Technology, 2022, 42(9): 891–899.
    [14] 栾溟弋, 武克文, 张树杰, 等. 连续爆轰发动机研究进展 [J]. 宇航总体技术, 2022, 6(3): 10–20.

    LUAN M Y, WU K W, ZHANG S J, et al. Progress in rotating detonation engine [J]. Astronautical Systems Engineering Technology, 2022, 6(3): 10–20.
    [15] 尚甲豪, 胡国暾, 汪球, 等. 高速弹丸诱导斜爆轰激波结构实验研究 [J]. 力学学报, 2023, 55(2): 309–317. doi: 10.6052/0459-1879-22-536

    SHANG J H, HU G T, WANG Q, et al. Experiment investigation of oblique detonation wave structure induced by hypersonic projectiles [J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 309–317. doi: 10.6052/0459-1879-22-536
    [16] 韩信, 刘云峰, 张子健, 等. 提高高马赫数超燃冲压发动机推力的理论方法 [J]. 力学学报, 2022, 54(3): 633–643. doi: 10.6052/0459-1879-21-350

    HAN X, LIU Y F, ZHANG Z J, et al. The theoretical method to increase the thrust of high Mach number scramjets [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 633–643. doi: 10.6052/0459-1879-21-350
    [17] PINTGEN F, SHEPHERD J E. Detonation diffraction in gases [J]. Combustion and Flame, 2009, 156(3): 665–677. doi: 10.1016/j.combustflame.2008.09.008
    [18] LEE J H S. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures [J]. Symposium (International) on Combustion, 1979, 17(1): 1269–1280. doi: 10.1016/S0082-0784(79)80120-4
    [19] OHYAGI S, OBARA T, HOSHI S, et al. Diffraction and re-initiation of detonations behind a backward-facing step [J]. Shock Waves, 2002, 12(3): 221–226. doi: 10.1007/s00193-002-0156-z
    [20] BEDAREV I A, TEMERBEKOV V M. Modeling of attenuation and suppression of cellular detonation in the hydrogen-air mixture by circular obstacles [J]. International Journal of Hydrogen Energy, 2022, 47(90): 38455–38467. doi: 10.1016/j.ijhydene.2022.08.307
    [21] SAIF M, WANG W T, PEKALSKI A, et al. Chapman-Jouguet deflagrations and their transition to detonation [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2771–2779. doi: 10.1016/j.proci.2016.07.122
    [22] RADULESCU M, SHARPE G, BRADLEY D. A universal parameter quantifying explosion hazards, detonability and hot spot formation: the χ number [C]//Proceedings of the Seventh International Seminar Fire and Explosion Hazards. University of Maryland, College Park, USA. Singapore: Research Publishing, 2013: 617–626.
    [23] YANG T, HE Q, NING J, et al. Experimental and numerical studies on detonation failure and re-initiation behind a half-cylinder [J]. International Journal of Hydrogen Energy, 2022, 47(25): 12711–12725. doi: 10.1016/j.ijhydene.2022.01.230
    [24] 景天雨, 任会兰, 李健. 气相爆轰波马赫反射过驱动马赫杆演化过程的实验研究 [J]. 中国科学: 技术科学, 2021, 51(4): 446–458. doi: 10.1360/SST-2020-0427

    JING T Y, REN H L, LI J. Transition of an overdriven Mach stem in the Mach reflection of detonations in H2/O2 mixtures [J]. Scientia Sinica Technologica, 2021, 51(4): 446–458. doi: 10.1360/SST-2020-0427
    [25] RAM O, GEVA M, SADOT O. High spatial and temporal resolution study of shock wave reflection over a coupled convex-concave cylindrical surface [J]. Journal of Fluid Mechanics, 2015, 768: 219–239. doi: 10.1017/jfm.2015.80
    [26] GUO C M, ZHANG D L, XIE W. The Mach reflection of a detonation based on soot track measurements [J]. Combustion and Flame, 2001, 127(3): 2051–2058. doi: 10.1016/S0010-2180(01)00307-8
    [27] 牛淑贞, 杨鹏飞, 杨旸, 等. 来流速度突变对斜爆轰反射波系驻定特性影响的数值研究 [J]. 中国科学: 物理学 力学 天文学, 2023, 53(3): 164–176.

    NIU S Z, YANG P F, YANG Y, et al. Numerical study of the effect of a sudden change in flow velocity on the stability of an oblique detonation reflected wave system [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53(3): 164–176.
    [28] LV Y, IHME M. Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step [J]. Proceedings of the Combustion Institute. 2015, 35(2): 1963–1972.
    [29] YUAN X Q, ZHOU J, LIU S J, et al. Diffraction of cellular detonation wave over a cylindrical convex wall [J]. Acta Astronautica, 2020, 169: 94–107. doi: 10.1016/j.actaastro.2019.12.039
    [30] VASIL’EV A A, VASIL’EV V A. Diffraction of waves in combustible mixtures [J]. Journal of Engineering Physics and Thermophysics, 2010, 83(6): 1178–1196. doi: 10.1007/s10891-010-0441-0
    [31] 王鲁庆, 马宏昊, 王波, 等. 氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究 [J]. 高压物理学报, 2018, 32(3): 123–129. doi: 10.11858/gywlxb.20170687

    WANG L Q, MA H H, WANG B, et al. Detonation propagation in hydrogen/methane-air mixtures in a round tube filled with orifice plates [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 123–129. doi: 10.11858/gywlxb.20170687
    [32] LI Q, KELLENBERGER M, CICCARELLI G. Geometric influence on the propagation of the quasi-detonations in a stoichiometric H2-O2 mixture [J]. Fuel, 2020, 269: 117396. doi: 10.1016/j.fuel.2020.117396
    [33] 范菊梦, 沈婷, 刘丹丹, 等. 浓度梯度对火焰加速和爆燃转爆轰的影响 [J]. 工程热物理学报, 2023, 44(1): 266–273.

    FAN J M, SHEN T, LIU D D, et al. Effects of composition gradient on flame acceleration and transition to detonation [J]. Journal of Engineering Thermophysics, 2023, 44(1): 266–273.
    [34] GOODWIN D G, MOFFAT H K, SPETH R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes [CP]. (2015-08-13)[2023-05-30]. http://www.cantera.org.
    [35] 张治. 管道内衬边界对氢气爆轰抑制机理研究 [D]. 合肥: 合肥工业大学, 2021: 69–72.

    ZHANG Z. Study of hydrogen detonation suppression mechanism by inner boundary of channel [D]. Hefei: Hefei University of Technology, 2021: 69–72.
    [36] GRONDIN J S, LEE J H S. Experimental observation of the onset of detonation downstream of a perforated plate [J]. Shock Waves, 2010, 20: 381–386. doi: 10.1007/s00193-010-0267-x
  • 加载中
图(10)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  57
  • PDF下载量:  81
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-06-16
  • 录用日期:  2023-07-20
  • 网络出版日期:  2023-10-16
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回