Experimental Investigation of Plate Driven by HNS-Based PBX Explosive and Equation of State Parameters Determination for Explosive Detonation Products
-
摘要: 为确定六硝基茋基PBX-1炸药产物的状态方程参数,采用平面波透镜加载和激光干涉测速技术,测量了在长度不同、直径为6 mm的PBX-1炸药药柱爆轰驱动下金属平板的自由面速度变化历程。实验结果表明:PBX-1炸药的爆轰波传播速度约为6798.2 m/s,且炸药的长径比对驱动平板的有效装药量有显著影响;与长径比为1的情况相比,长径比为2时PBX-1炸药驱动平板的有效装药量更小,导致金属平板的最大运动速度降低,但是在驱动平板过程中,金属平板受平面波透镜加载边界的影响较小。基于实验数据,开展了长径比为2的PBX-1炸药爆轰驱动平板的数值模拟,确定了PBX-1炸药爆轰产物的状态方程参数,计算得到的平板自由面速度变化历程与实验结果吻合较好。研究结果可为冲击片雷管的可靠性评估提供重要的基础参数。Abstract: To determine the parameters of equation of state for detonation products of the HNS-based explosive PBX-1, the plane wave lens and the photonic Doppler velocimetry (PDV) were used to measure the free surface velocity histories of metal plates driven by the PBX-1 explosives. The explosive samples had diameters of 6 mm and different lengths. According to the experimental results, the detonation velocity of PBX-1 is about 6798.2 m/s, and the effective explosive volume is obviously affected by the ratio of length to diameter of explosive sample. Compared with the sample with the ratio equal to 1, the effective explosive volume of the sample with the ratio equal to 2, leads to a lower maximum plate velocity. The plate driven by the longer explosive sample is less affected by the initiation boundary of plane wave lens. Therefore, the experimental result obtained by the longer explosive sample was used to determine the detonation products’ parameters of equation of state by numerical simulation. The simulation showed that the simulated free surface velocity history is in good agreement with the experimental result. The obtained detonation products’ parameters of equation of state provides fundamental data for reliability assessment of slapper detonator.
-
表 1 PBX-1炸药样品与金属平板的实测参数
Table 1. Measured parameters of PBX-1 explosive samples and metal plates
Shot No. Probe No. Explosive sample length/mm Explosive initial density/(g·cm−3) Plate thickness/mm 1 1 6.00 1.582 0.19 2 11.98 1.580 0.19 2 1 6.01 1.585 0.18 2 12.03 1.586 0.19 3 1 6.02 1.585 0.19 2 11.99 1.588 0.19 表 2 实验测得的平板最大速度
Table 2. Measured maximum velocity of plate
Shot No. Maximum velocity/(m∙s−1) Probe 1 Probe 2 1 3163.6 3004.6 2 3167.4 3050.1 3 3246.8 3016.0 表 3 速度起跳时间与爆轰波传播速度计算结果
Table 3. Starting points and the calculated results of detonation velocity
Shot No. Starting point of velocity/μs Time delay/μs Difference of explosive
samples’ length/mmDetonation velocity/
(m·s−1)Probe 1 Probe 2 1 7.130 8.010 0.880 5.98 6795.5 2 7.129 8.030 0.901 6.02 6681.5 3 7.116 7.979 0.863 5.97 6917.7 ρ0/(g·cm−3) C/(km·s−1) S1 S2 S3 γ0 a 8.90 3.958 1.497 0 0 2.0 0 表 5 PBX-1炸药爆轰产物JWL状态方程参数
Table 5. Parameters of JWL equation of state for detonation product of PBX-1 explosive
A/GPa B/GPa C/GPa R1 R2 ω E0/GPa pJ/GPa DJ/(km·s−1) 694.26 17.28 1.23 5.6 1.4 0.45 7.0 18.9 6.798 -
[1] 谭凯元, 韩勇, 罗观, 等. HMX基PBX的作功能力及其JWL状态方程 [J]. 火炸药学报, 2013, 36(3): 42–45.TAN K Y, HAN Y, LUO G, et al. Power ability and JWL equation of state of a HMX-based PBX [J]. Chinese Journal of Explosive & Propellants, 2013, 36(3): 42–45. [2] YANG Y, DUAN Z P, LI S R, et al. Evaluation of the detonation characteristics of aluminized DNAN-based melt-cast explosive by the detonation cylinder test [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(4): e202100344. [3] LIU Y, WANG H F, BAI F, et al. A new equation of state for detonation products of RDX-Based aluminized explosives [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(10): 1293–1301. doi: 10.1002/prep.201800126 [4] CHIQUETE C, JACKSON S I, ANDERSON E K, et al. Detonation performance experiments and modeling for the DAAF-based high explosive PBX 9701 [J]. Combustion and Flame, 2021, 223: 382–397. doi: 10.1016/j.combustflame.2020.10.009 [5] JACKSON S I. Scaled cylinder test experiments with insensitive PBX 9502 explosive [C]//15th International Detonation Symposium, 2014: 171–180. [6] WELLE E J, TAPPAN A S, PAHL R J, et al. Diameter effects on detonation performance of HNS and CL-20 [C]//Proceedings of the 13th International Detonation Symposium. Norfolk: Sandia National Laboratories, 2006. [7] 陈清畴, 蒋小华, 李敏, 等. HNS-Ⅳ炸药的点火增长模型 [J]. 爆炸与冲击, 2012, 32(3): 328–332.CHEN Q C, JIANG X H, LI M, et al. Ignition and growth reactive flow model for HNS-Ⅳexplosive [J]. Explosion and Shock Waves, 2012, 32(3): 328–332. [8] 刘丹阳, 陈朗, 杨坤, 等. CL-20基炸药爆轰产物JWL状态方程实验标定方法研究 [J]. 兵工学报, 2016, 37(Suppl 1): 141–145.LIU D Y, CHEN L, YANG K, et al. Calibration method of parameters in JWL equation of state for detonation products of CL-20-based explosives [J]. Acta Armamentarii, 2016, 37(Suppl 1): 141–145. [9] 杨洋, 段卓平, 张连生, 等. 两种DNAN基含铝炸药的爆轰性能 [J]. 含能材料, 2019, 27(8): 679–684.YANG Y, DUAN Z P, ZHANG L S, et al. Detonation performance of two DNAN based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 679–684. [10] 郭向利, 韩勇, 刘世俊, 等. TATB基含铝炸药作功能力的试验研究 [J]. 火炸药学报, 2015, 38(3): 81–85. doi: 10.14077/j.issn.1007-7812.2015.03.016GUO X L, HAN Y, LIU S J, et al. Experimental study on work ability of TATB-based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2015, 38(3): 81–85. doi: 10.14077/j.issn.1007-7812.2015.03.016 [11] PACHMÁŇ J, KÜNZEL M, NĚMEC O, et al. Characterization of Al plate acceleration by low power photonic Doppler velocimetry (PDV) [C]//Proceedings of the 40th International Pyrotechnics Society Seminar. Denver: IPSUSA Seminars (International Pyrotechnics Society), 2014. [12] 虞德水, 赵锋, 谭多望, 等. JOB-9003和JB-9014炸药平面爆轰驱动飞片的对比研究 [J]. 爆炸与冲击, 2006, 26(2): 140–144.YU D S, ZHAO F, TAN D W, et al. Experimental studies on detonation driving behavior of JOB-9003 and JB-9014 slab explosives [J]. Explosion and Shock Waves, 2006, 26(2): 140–144. [13] 向梅, 饶国宁, 彭金华. 复合装药结构爆轰驱动飞片作用数值模拟 [J]. 火工品, 2010(6): 1–4. doi: 10.3969/j.issn.1003-1480.2010.06.001XIANG M, RAO G N, PENG J H. The numerical simulation on driven metallic flyer plate rule for the composite charge structure [J]. Initiators & Pyrotechnics, 2010(6): 1–4. doi: 10.3969/j.issn.1003-1480.2010.06.001 [14] COOK M A. The science of high explosives [M]. New York: Reinhold, 1958. [15] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 467–472.SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000: 467–472. [16] MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980. [17] 温丽晶, 段卓平, 张震宇, 等. 采用遗传算法确定炸药爆轰产物JWL状态方程参数 [J]. 爆炸与冲击, 2013(Suppl 1): 130–134.WEN L J, DUAN Z P, ZHANG Z Y, et al. Determination of JWL-EOS parameters for explosive detonation products using genetic algorithm [J]. Explosion and Shock Waves, 2013(Suppl 1): 130–134.