HNS基PBX炸药爆轰驱动平板实验及产物状态方程参数确定

李淑睿 张旭 裴红波 莫建军 傅华

李淑睿, 张旭, 裴红波, 莫建军, 傅华. HNS基PBX炸药爆轰驱动平板实验及产物状态方程参数确定[J]. 高压物理学报, 2023, 37(6): 061301. doi: 10.11858/gywlxb.20230669
引用本文: 李淑睿, 张旭, 裴红波, 莫建军, 傅华. HNS基PBX炸药爆轰驱动平板实验及产物状态方程参数确定[J]. 高压物理学报, 2023, 37(6): 061301. doi: 10.11858/gywlxb.20230669
LI Shurui, ZHANG Xu, PEI Hongbo, MO Jianjun, FU Hua. Experimental Investigation of Plate Driven by HNS-Based PBX Explosive and Equation of State Parameters Determination for Explosive Detonation Products[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 061301. doi: 10.11858/gywlxb.20230669
Citation: LI Shurui, ZHANG Xu, PEI Hongbo, MO Jianjun, FU Hua. Experimental Investigation of Plate Driven by HNS-Based PBX Explosive and Equation of State Parameters Determination for Explosive Detonation Products[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 061301. doi: 10.11858/gywlxb.20230669

HNS基PBX炸药爆轰驱动平板实验及产物状态方程参数确定

doi: 10.11858/gywlxb.20230669
基金项目: 冲击波物理与爆轰物理重点实验室基金(2022JCJQLB05706)
详细信息
    作者简介:

    李淑睿(1996-),女,博士,助理研究员,主要从事爆炸与冲击动力学研究. E-mail:shurui_li@foxmail.com

  • 中图分类号: O382

Experimental Investigation of Plate Driven by HNS-Based PBX Explosive and Equation of State Parameters Determination for Explosive Detonation Products

  • 摘要: 为确定六硝基茋基PBX-1炸药产物的状态方程参数,采用平面波透镜加载和激光干涉测速技术,测量了在长度不同、直径为6 mm的PBX-1炸药药柱爆轰驱动下金属平板的自由面速度变化历程。实验结果表明:PBX-1炸药的爆轰波传播速度约为6798.2 m/s,且炸药的长径比对驱动平板的有效装药量有显著影响;与长径比为1的情况相比,长径比为2时PBX-1炸药驱动平板的有效装药量更小,导致金属平板的最大运动速度降低,但是在驱动平板过程中,金属平板受平面波透镜加载边界的影响较小。基于实验数据,开展了长径比为2的PBX-1炸药爆轰驱动平板的数值模拟,确定了PBX-1炸药爆轰产物的状态方程参数,计算得到的平板自由面速度变化历程与实验结果吻合较好。研究结果可为冲击片雷管的可靠性评估提供重要的基础参数。

     

  • 图  PBX-1炸药爆轰驱动平板的实验装置

    Figure  1.  Experimental device of plate driven by PBX-1 explosive

    图  实验测得的典型信号

    Figure  2.  Typical experimental data

    图  平板自由面速度随时间的变化曲线

    Figure  3.  Experimental results of free surface velocity history

    图  探头1测得的平板位移-时间曲线(内插图中的单位为mm)

    Figure  4.  Displacement-time curves of metal plate measured by probe 1(Unit in inset figure is mm)

    图  炸药长径比为1时的稀疏波轮廓线

    Figure  5.  Rarefaction profile for the explosive whose length equal to diameter

    图  探头2测得的平板自由面速度曲线对比

    Figure  6.  Comparison of free surface velocity profiles of plate obtained by probe 2

    图  炸药驱动平板的数值计算模型

    Figure  7.  Numerical model of plate driven by explosive

    图  不同网格尺寸条件下计算得到的铜板速度-时间曲线

    Figure  8.  Simulated velocity-time curves of plate for different mesh sizes of copper

    图  数值模拟与实验获得的PBX-1炸药爆轰驱动下平板的自由面速度随时间的变化曲线

    Figure  9.  Free surface velocity-time curves of plate driven by PBX-1 explosive obtained by simulation and experiment

    表  1  PBX-1炸药样品与金属平板的实测参数

    Table  1.   Measured parameters of PBX-1 explosive samples and metal plates

    Shot No. Probe No. Explosive sample length/mm Explosive initial density/(g·cm−3) Plate thickness/mm
    116.001.5820.19
    211.981.5800.19
    216.011.5850.18
    212.031.5860.19
    316.021.5850.19
    211.991.5880.19
    下载: 导出CSV

    表  2  实验测得的平板最大速度

    Table  2.   Measured maximum velocity of plate

    Shot No.Maximum velocity/(m∙s−1)
    Probe 1Probe 2
    13163.63004.6
    23167.43050.1
    33246.83016.0
    下载: 导出CSV

    表  3  速度起跳时间与爆轰波传播速度计算结果

    Table  3.   Starting points and the calculated results of detonation velocity

    Shot No. Starting point of velocity/μs Time delay/μs Difference of explosive
    samples’ length/mm
    Detonation velocity/
    (m·s−1)
    Probe 1 Probe 2
    1 7.130 8.010 0.880 5.98 6795.5
    2 7.129 8.030 0.901 6.02 6681.5
    3 7.116 7.979 0.863 5.97 6917.7
    下载: 导出CSV

    表  4  铜的Grüneisen状态方程参数[16]

    Table  4.   Parameters of Grüneisen equation of state for copper[16]

    ρ0/(g·cm−3) C/(km·s−1) S1 S2 S3 γ0 a
    8.90 3.958 1.497 0 0 2.0 0
    下载: 导出CSV

    表  5  PBX-1炸药爆轰产物JWL状态方程参数

    Table  5.   Parameters of JWL equation of state for detonation product of PBX-1 explosive

    A/GPa B/GPa C/GPa R1 R2 ω E0/GPa pJ/GPa DJ/(km·s−1)
    694.26 17.28 1.23 5.6 1.4 0.45 7.0 18.9 6.798
    下载: 导出CSV
  • [1] 谭凯元, 韩勇, 罗观, 等. HMX基PBX的作功能力及其JWL状态方程 [J]. 火炸药学报, 2013, 36(3): 42–45.

    TAN K Y, HAN Y, LUO G, et al. Power ability and JWL equation of state of a HMX-based PBX [J]. Chinese Journal of Explosive & Propellants, 2013, 36(3): 42–45.
    [2] YANG Y, DUAN Z P, LI S R, et al. Evaluation of the detonation characteristics of aluminized DNAN-based melt-cast explosive by the detonation cylinder test [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(4): e202100344.
    [3] LIU Y, WANG H F, BAI F, et al. A new equation of state for detonation products of RDX-Based aluminized explosives [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(10): 1293–1301. doi: 10.1002/prep.201800126
    [4] CHIQUETE C, JACKSON S I, ANDERSON E K, et al. Detonation performance experiments and modeling for the DAAF-based high explosive PBX 9701 [J]. Combustion and Flame, 2021, 223: 382–397. doi: 10.1016/j.combustflame.2020.10.009
    [5] JACKSON S I. Scaled cylinder test experiments with insensitive PBX 9502 explosive [C]//15th International Detonation Symposium, 2014: 171–180.
    [6] WELLE E J, TAPPAN A S, PAHL R J, et al. Diameter effects on detonation performance of HNS and CL-20 [C]//Proceedings of the 13th International Detonation Symposium. Norfolk: Sandia National Laboratories, 2006.
    [7] 陈清畴, 蒋小华, 李敏, 等. HNS-Ⅳ炸药的点火增长模型 [J]. 爆炸与冲击, 2012, 32(3): 328–332.

    CHEN Q C, JIANG X H, LI M, et al. Ignition and growth reactive flow model for HNS-Ⅳexplosive [J]. Explosion and Shock Waves, 2012, 32(3): 328–332.
    [8] 刘丹阳, 陈朗, 杨坤, 等. CL-20基炸药爆轰产物JWL状态方程实验标定方法研究 [J]. 兵工学报, 2016, 37(Suppl 1): 141–145.

    LIU D Y, CHEN L, YANG K, et al. Calibration method of parameters in JWL equation of state for detonation products of CL-20-based explosives [J]. Acta Armamentarii, 2016, 37(Suppl 1): 141–145.
    [9] 杨洋, 段卓平, 张连生, 等. 两种DNAN基含铝炸药的爆轰性能 [J]. 含能材料, 2019, 27(8): 679–684.

    YANG Y, DUAN Z P, ZHANG L S, et al. Detonation performance of two DNAN based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 679–684.
    [10] 郭向利, 韩勇, 刘世俊, 等. TATB基含铝炸药作功能力的试验研究 [J]. 火炸药学报, 2015, 38(3): 81–85. doi: 10.14077/j.issn.1007-7812.2015.03.016

    GUO X L, HAN Y, LIU S J, et al. Experimental study on work ability of TATB-based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2015, 38(3): 81–85. doi: 10.14077/j.issn.1007-7812.2015.03.016
    [11] PACHMÁŇ J, KÜNZEL M, NĚMEC O, et al. Characterization of Al plate acceleration by low power photonic Doppler velocimetry (PDV) [C]//Proceedings of the 40th International Pyrotechnics Society Seminar. Denver: IPSUSA Seminars (International Pyrotechnics Society), 2014.
    [12] 虞德水, 赵锋, 谭多望, 等. JOB-9003和JB-9014炸药平面爆轰驱动飞片的对比研究 [J]. 爆炸与冲击, 2006, 26(2): 140–144.

    YU D S, ZHAO F, TAN D W, et al. Experimental studies on detonation driving behavior of JOB-9003 and JB-9014 slab explosives [J]. Explosion and Shock Waves, 2006, 26(2): 140–144.
    [13] 向梅, 饶国宁, 彭金华. 复合装药结构爆轰驱动飞片作用数值模拟 [J]. 火工品, 2010(6): 1–4. doi: 10.3969/j.issn.1003-1480.2010.06.001

    XIANG M, RAO G N, PENG J H. The numerical simulation on driven metallic flyer plate rule for the composite charge structure [J]. Initiators & Pyrotechnics, 2010(6): 1–4. doi: 10.3969/j.issn.1003-1480.2010.06.001
    [14] COOK M A. The science of high explosives [M]. New York: Reinhold, 1958.
    [15] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 467–472.

    SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000: 467–472.
    [16] MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980.
    [17] 温丽晶, 段卓平, 张震宇, 等. 采用遗传算法确定炸药爆轰产物JWL状态方程参数 [J]. 爆炸与冲击, 2013(Suppl 1): 130–134.

    WEN L J, DUAN Z P, ZHANG Z Y, et al. Determination of JWL-EOS parameters for explosive detonation products using genetic algorithm [J]. Explosion and Shock Waves, 2013(Suppl 1): 130–134.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  56
  • PDF下载量:  31
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-07-06
  • 录用日期:  2023-07-07
  • 网络出版日期:  2023-12-08
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回