基于WOA-XGBoost模型的胶结充填体强度预测

袁丛祥 刘志祥 杨小聪 郭金峰 万串串 熊帅 刘伟军

袁丛祥, 刘志祥, 杨小聪, 郭金峰, 万串串, 熊帅, 刘伟军. 基于WOA-XGBoost模型的胶结充填体强度预测[J]. 高压物理学报, 2023, 37(5): 054201. doi: 10.11858/gywlxb.20230668
引用本文: 袁丛祥, 刘志祥, 杨小聪, 郭金峰, 万串串, 熊帅, 刘伟军. 基于WOA-XGBoost模型的胶结充填体强度预测[J]. 高压物理学报, 2023, 37(5): 054201. doi: 10.11858/gywlxb.20230668
YUAN Congxiang, LIU Zhixiang, YANG Xiaocong, GUO Jinfeng, WAN Chuanchuan, XIONG Shuai, LIU Weijun. Strength Prediction of Cemented Paste Backfill Body Based on WOA-XGBoost Model[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054201. doi: 10.11858/gywlxb.20230668
Citation: YUAN Congxiang, LIU Zhixiang, YANG Xiaocong, GUO Jinfeng, WAN Chuanchuan, XIONG Shuai, LIU Weijun. Strength Prediction of Cemented Paste Backfill Body Based on WOA-XGBoost Model[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054201. doi: 10.11858/gywlxb.20230668

基于WOA-XGBoost模型的胶结充填体强度预测

doi: 10.11858/gywlxb.20230668
基金项目: 国家重点研发计划项目(2022YFC2904101);国家自然科学基金(52374107,51974359)
详细信息
    作者简介:

    袁丛祥(1999-),男,硕士研究生,主要从事充填体与岩石力学研究. E-mail:225511036@csu.edu.cn

    通讯作者:

    刘志祥(1967-),男,博士,教授,主要从事采矿工程与岩石力学研究. E-mail:liulzx@csu.edu.cn

  • 中图分类号: O346; TD853

Strength Prediction of Cemented Paste Backfill Body Based on WOA-XGBoost Model

  • 摘要: 单轴抗压强度作为胶结充填体重要的力学性能指标,通常使用传统的力学试验来确定。使用鲸鱼优化算法(whale optimization algorithm,WOA)对极限梯度提升模型(XGBoost)进行优化,建立了WOA-XGBoost混合模型。以某铅锌矿充填料浆配比试验得到的80组数据作为数据库,选取固体质量分数、水泥占比、尾砂占比及养护天数作为输入参数,充填体试块抗压强度作为输出参数。为了与WOA-XGBoost模型进行比较,还构建了XGBoost、RF和WOA-RF模型。结果表明:WOA-XGBoost模型的决定系数为0.965 0,均方根误差为0.207 4,平均绝对误差为0.170 3;XGBoost模型的决定系数、均方根误差、平均绝对误差分别为0.897 1、0.408 4和0.246 7。可见,鲸鱼优化算法能够显著提高XGBoost模型的预测能力。相比XGBoost、RF和WOA-RF模型,WOA-XGBoost混合模型具有更高的预测精度。研究结果对于胶结充填材料的设计和配比优化具有重要意义。

     

  • 图  尾砂粒级组成曲线

    Figure  1.  Particle size distribution curve of the tailings

    图  试块测试过程示意图

    Figure  2.  Schematic diagram of the test process

    图  WOA优化XGBoost模型流程

    Figure  3.  XGBoost optimization process with WOA

    图  WOA-XGBoost预测模型不同种群大小的适应度变化曲线

    Figure  4.  Fitness value versus iteration curves of the WOA-XGBoost model with different population sizes

    图  模型训练集和测试集的预测值与实测值的对比

    Figure  5.  Comparison of the predicted and actual values of the WOA-XGBoost model

    图  模型的性能评价参数的对比

    Figure  6.  Comparison of performance metrics with mentioned models

    图  模型的单轴抗压强度预测能力对比

    Figure  7.  Comparison of the compressive strength predictive ability of the developed methods

    图  各输入参数的重要性得分

    Figure  8.  Importance scores of the input parameters

    表  1  分级尾砂的物理性质和粒径分布

    Table  1.   Physical property and particle size distribution of classified tailings

    Physical property Particle size distribution/μm
    Loose bulk density/(g·cm−3) Loose porosity/% Density/(g·cm−3) Specific gravity D10 D50 D60 D90
    1.81 46.99 3.36 3.42 2.210 38.237 56.355 163.321
    下载: 导出CSV

    表  2  尾砂化学成分(阳离子)

    Table  2.   Chemical components of the tailings (cations) %

    MgAlKCaFeMnTiCuZnPbRest
    1.2302.6800.43016.70012.6000.7700.1200.0200.1500.010<0.003
    下载: 导出CSV

    表  3  尾砂胶结充填体强度测试结果

    Table  3.   Test results for unconfined compressive strength of cemented paste backfill

    GroupMass fraction of
    solid/%
    Cement
    proportion
    Tailings
    proportion
    σc/MPa
    7 d14 d28 d60 d90 d
    A1720.200.801.842.883.004.444.67
    A2720.110.890.851.352.062.152.23
    A3720.090.910.781.071.151.201.50
    A4720.080.920.550.911.011.081.13
    B1700.200.801.612.582.764.234.48
    B2700.110.890.711.151.281.341.52
    B3700.090.910.621.051.121.171.25
    B4700.080.920.430.700.750.780.94
    C1680.200.801.342.522.652.663.00
    C2680.110.890.560.900.991.061.20
    C3680.090.910.480.660.730.851.06
    C4680.080.920.330.550.700.740.92
    D1650.200.800.791.271.312.162.58
    D2650.110.890.370.600.830.860.91
    D3650.090.910.300.530.580.650.71
    D4650.080.920.270.440.490.620.68
    下载: 导出CSV

    表  4  WOA-XGBoost预测模型的性能参数

    Table  4.   Performance metrics of the proposed WOA-XGBoost model

    Swarm size Training set Test set
    R2 δRMSE δMAE R2 δRMSE δMAE
    25 0.999 7 0.016 8 0.012 4 0.931 0 0.283 4 0.192 6
    50 0.999 6 0.020 9 0.016 4 0.926 7 0.269 0 0.190 1
    75 0.999 5 0.021 1 0.016 4 0.917 9 0.344 0 0.355 4
    100 0.999 7 0.016 1 0.013 3 0.964 2 0.214 3 0.183 8
    125 0.999 8 0.014 3 0.010 9 0.965 0 0.207 4 0.170 3
    150 0.999 7 0.018 4 0.014 8 0.917 1 0.147 0 0.123 2
    下载: 导出CSV
  • [1] 李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索 [J]. 中国有色金属学报, 2017, 27(6): 1236–1262.

    LI X B, ZHOU J, WANG S F, et al. Review and practice of deep mining for solid mineral resources [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1236–1262.
    [2] DU K, LIU M H, ZHOU J, et al. Investigating the slurry fluidity and strength characteristics of cemented backfill and strength prediction models by developing hybrid GA-SVR and PSO-SVR [J]. Mining, Metallurgy & Exploration, 2022, 39(2): 433–452.
    [3] QI C C, FOURIE A. Cemented paste backfill for mineral tailings management: review and future perspectives [J]. Minerals Engineering, 2019, 144: 106025. doi: 10.1016/j.mineng.2019.106025
    [4] 李夕兵, 姚金蕊, 宫凤强. 硬岩金属矿山深部开采中的动力学问题 [J]. 中国有色金属学报, 2011, 21(10): 2551–2563.

    LI X B, YAO J R, GONG F Q. Dynamic problems in deep exploitation of hard rock metal mines [J]. The Chinese Journal of Nonferrous Mentals, 2011, 21(10): 2551–2563.
    [5] 韩斌, 王贤来, 肖卫国. 基于多元非线性回归的井下采场充填体强度预测及评价 [J]. 采矿与安全工程学报, 2012, 29(5): 714–718.

    HAN B, WANG X L, XIAO W G. Estimation and evaluation of backfill strength in underground stope based on multivariate nonlinear regression analysis [J]. Journal of Mining and Safety Engineering, 2012, 29(5): 714–718.
    [6] 付自国, 乔登攀, 郭忠林, 等. 超细尾砂胶结充填体强度计算模型及应用 [J]. 岩土力学, 2018, 39(9): 3147–3156.

    FU Z G, QIAO D P, GUO Z L, et al. A model for calculating strength of ultra-fine tailings cemented hydraulic fill and its application [J]. Rock and Soil Mechanics, 2018, 39(9): 3147–3156.
    [7] 魏晓明, 郭利杰, 周小龙, 等. 高阶段胶结充填体全时序应力演化规律及预测模型研究 [J]. 岩土力学, 2020, 41(11): 3613–3620.

    WEI X M, GUO L J, ZHOU X L, et al. Full sequence stress evolution law and prediction model of high stage cemented backfill [J]. Rock and Soil Mechanics, 2020, 41(11): 3613–3620.
    [8] OREJARENA L, FALL M. The use of artificial neural networks to predict the effect of sulphate attack on the strength of cemented paste backfill [J]. Bulletin of Engineering Geology and the Environment, 2010, 69(4): 659–670. doi: 10.1007/s10064-010-0326-7
    [9] 刘志祥, 周士霖, 郭永乐. 磷石膏充填体强度GA-BP神经网络预测模型 [J]. 矿冶工程, 2011, 31(6): 1–5.

    LIU Z X, ZHOU S L, GUO Y L. GA-BP neural network prediction model for strength of phosphogypsum backfill [J]. Mining and Metallurgical Engineering, 2011, 31(6): 1–5.
    [10] QI C C, TANG X L, DONG X J, et al. Towards intelligent mining for backfill: a genetic programming-based method for strength forecasting of cemented paste backfill [J]. Minerals Engineering, 2019, 133: 69–79. doi: 10.1016/j.mineng.2019.01.004
    [11] 谭文侃, 胡南燕, 叶义成, 等. 基于四大集成学习的岩爆烈度分级预测 [J]. 岩石力学与工程学报, 2022, 41(Suppl 2): 3250–3259.

    TAN W K, HU N Y, YE Y C, et al. Rockburst intensity classification prediction based on four ensemble learning [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl 2): 3250–3259.
    [12] 佟大威, 杨传会, 余佳, 等. 基于XGBoost-PSO的混凝土重力坝体型多目标优化设计 [J]. 河海大学学报 (自然科学版), 2023, 51(3): 91–98.

    TONG D W, YANG C H, YU J, et al. Multi-objective shape optimization of concrete gravity dam based on XGBoost-PSO [J]. Journal of Hohai University (Natural Sciences), 2023, 51(3): 91–98.
    [13] DE-PRADO-GIL J, PALENCIA C, SILVA-MONTEIRO N, et al. To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models [J]. Case Studies in Construction Materials, 2022, 16: e1046.
    [14] QI C C, FOURIE A, CHEN Q S, et al. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill [J]. Journal of Cleaner Production, 2018, 183: 566–578. doi: 10.1016/j.jclepro.2018.02.154
    [15] XIONG S, LIU Z X, MIN C D, et al. Compressive strength prediction of cemented backfill containing phosphate tailings using extreme gradient boosting optimized by whale optimization algorithm [J]. Materials, 2023, 16(1): 308.
    [16] LU X, ZHOU W, DING X H, et al. Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill [J]. IEEE Access, 2019, 7: 72125–72133. doi: 10.1109/ACCESS.2019.2918177
    [17] FU X L, WU H L, ZHANG R, et al. Heavy metals containment by vertical cutoff walls backfilled with novel reactive magnesium-activated slag-bentonite-sand: membrane and diffusion behavior [J]. Journal of Cleaner Production, 2021, 328: 129623. doi: 10.1016/j.jclepro.2021.129623
    [18] 李夕兵, 王丽红, 刘大勇. 基于海底开采的高倍线强阻力充填技术 [J]. 科技导报, 2014, 32(3): 39–43. doi: 10.3981/j.issn.1000-7857.2014.03.005

    LI X B, WANG L H, LIU D Y. Tilling technology with high filling times line and strong resistance for the undersea mining [J]. Science & Technology Review, 2014, 32(3): 39–43. doi: 10.3981/j.issn.1000-7857.2014.03.005
    [19] MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
    [20] SONG Y, LI H W, XU P F, et al. A method of intrusion detection based on WOA-XGBoost algorithm [J]. Discrete Dynamics in Nature and Society, 2022, 2022: 1–9.
    [21] 史永胜, 李锦, 任嘉睿, 等. 基于WOA-XGBoost的锂离子电池剩余使用寿命预测 [J]. 储能科学与技术, 2022, 11(10): 3354–3363.

    SHI Y S, LI J, REN J R, et al. Prediction of residual service life of lithium-ion battery using WOA-XGBoost [J]. Energy Storage Science and Technology, 2022, 11(10): 3354–3363.
    [22] ZHANG M, WANG Z J, WANG L, et al. Automated lung cancer classification based on the tissue dielectric property [C]//Proceedings of the Biannual World Automation Congres. Taipei, China: Institute of Electrical and Electronics Engineers, 2021.
    [23] ZHOU J, ZHU S L, QIU Y G, et al. Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm [J]. Acta Geotechnica, 2022, 17(4): 1343–1366. doi: 10.1007/s11440-022-01450-7
    [24] DEV V A, EDEN M R. Formation lithology classification using scalable gradient boosted decision trees [J]. Computers and Chemical Engineering, 2019, 128: 392–404.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  55
  • PDF下载量:  69
出版历程
  • 收稿日期:  2023-05-22
  • 修回日期:  2023-06-12
  • 录用日期:  2023-07-14
  • 网络出版日期:  2023-09-28
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回