Field Experimental Research on Blasting Vibration Attenuation Law of Sand-Mudstone Interbedded Rock Slope
-
摘要: 为保证砂泥岩互层岩质边坡在爆破振动作用下安全稳定,需明确爆破振动在砂泥岩互层岩质边坡中的衰减规律。为此,以平陆运河青年枢纽一期工程为依托,通过开展现场爆破试验,对比分析高程效应修正前后爆破振动衰减模型的拟合结果,深入研究砂泥岩互层岩质边坡的爆破振动衰减规律。结果表明:边坡岩体在爆破振动作用下的最大位移会产生高程放大效应,最终位移可能不为零;考虑高程效应的爆破振动衰减模型较未修正的萨道夫斯基公式的拟合精度更高,岩质边坡的爆破振动衰减规律应考虑高程效应;受层理倾向和倾角的影响,砂泥岩互层岩质边坡的爆破振动衰减规律存在差异,建立不同层理下的爆破振动衰减预测模型是后续重要的研究方向。Abstract: In order to ensure the safety and stability of sand-mudstone interbedded rock slope under blasting vibration, it is necessary to clarify the attenuation law of blasting vibration in sand-mudstone interbedded rock slope. Based on the first-stage project of Pinglu Canal Youth Hub, through the field blasting test, the fitting results of the blasting vibration attenuation model before and after the elevation effect correction were compared and analyzed, and the blasting vibration attenuation law of the sand-mudstone interbedded rock slope was deeply studied. The results show that the maximum displacement of slope rock mass under blasting vibration produces elevation amplification effect, and the final displacement may not be zero. The fitting accuracy of a blasting vibration attenuation model considering the elevation effect is higher than that of the unmodified Sadoevsky formula, and the elevation effect should be considered in the blasting vibration attenuation law of rock slope. There are differences in the attenuation law of blasting vibration for the sand-mudstone interbedded rock slope with different tendency and dip angles of beddings. It is an important research direction to establish the attenuation law of blasting vibration for different beddings.
-
Key words:
- blasting vibration /
- sand-mudstone interbed /
- rock slope /
- elevation effect /
- field experiment
-
表 1 志留系下统连滩群第四组岩石的物理力学参数
Table 1. Physical and mechanical parameters of rock mass in the fourth group of Liantan Group of Lower Silurian System
Rock mass Statistical
projectρn/
(g·cm−3)ρs/
(g·cm−3)w/% ku/% Uniaxial compression/MPa Natural Dry Saturated 1 Max 2.72 2.73 2.12 2.38 69.78 55.10 52.00 Min 2.56 2.65 0.02 0.11 18.18 27.60 18.33 Mean 2.64 2.70 0.47 0.51 46.32 39.26 30.66 2 Max 2.66 1.99 4.14 4.79 Min 2.59 0.37 0.67 2.47 Mean 2.63 1.43 2.91 3.93 表 2 志留系下统连滩群第四组岩体工程地质分类
Table 2. Engineering geological classification of rock mass in the fourth group of Liantan Group of Lower Silurian System
Stratum
lithologicWeathering
degreeRock mass characteristics Rock mass classification Engineering geological evaluation of rock mass The first section of sandstone intercalated mudstone (S1lnd-1) and the second section sandstone (S1lnd-2) Strongly weathered The bedding and weathering fissures are well developed; the rock mass is loose;
the structural plane is mostly mud;
the rock mass structures are mosaic
structure and cataclastic structure.CV The rock mass is broken; the strength is low; the anti-sliding and anti-deformation performance is poor. Moderately weathered The rock mass is mainly thin layer to medium thick layer; the structural
plane is moderately developed and
mostly closed; the embedded force
between rock blocks is good.CⅣ The rock mass is relatively complete; the local integrity is poor; the overall strength is high, and the anti-sliding and anti-deformation performance is controlled by the structural plane to a certain extent. Weakly weathered The rock mass is mainly thick to
medium thick layers; the structural
plane is moderately developed
and mostly closed.CⅢ The rock mass is complete, and the anti-sliding and anti-deformation properties are controlled by rock strength. The third section of sandstone and mudstone interbed
(S1lnd-3) and the fourth section of sandstone, argillaceous siltstone with mudstone
(S1lnd-4)Strongly weathered The bedding plane and weathering
cracks are well developed; the rock
mass is relaxed; the structural plane
is mostly muddy; the rock mass
structure is a mixture of block
structure and fragmentation structure.CV The rock mass is broken; the strength is low, and the anti-sliding and anti-deformation performance is poor. Moderately weathered The rock mass is mainly thin layer to
medium thick layer; the structural
plane is moderately developed and
mostlyclosed; the embedded force
between the rock blocks is good.CⅣ The rock mass is relatively complete; the local integrity is poor, and the anti-sliding and anti-deformation performance are controlled by rock strength. Weekly
weatheredThe rock mass has an interbedded
structure; the structural plane is
slightly developed, and the
cracks are well bonded.CⅣ The rock mass is complete, and the anti-sliding and anti-deformation properties are controlled by rock strength. 表 3 试验边坡岩层产状
Table 3. Rock occurrence of the test slope
Stratification
planeSlope surface 1 Slope surface 2 Slope surface 3 Tendency/(°) Dip angle/(°) Tendency/(°) Dip angle/(°) Tendency/(°) Dip angle/(°) 1 252 52 368 50 345 34 2 265 60 345 48 325 28 3 269 52 358 40 表 4 试验测点振速统计结果
Table 4. Statistical results of vibration velocity at measuring points
Test
sequenceMeasuring
pointHeight/m PPV/(cm·s−1) Blasting
distance/mCharge/kg x-direction y-direction z-direction 1 V1 0.10 37.72 16.38 35.20 12.80 48 36.92 16.42 34.56 8.23 42 36.37 32.77 33.22 4.39 36 V3 20.13 1.26 — — 43.10 48 0.86 — — 39.80 42 1.02 — — 36.20 36 V5 50.50 0.57 1.15 1.25 81.20 48 0.35 0.63 0.66 78.90 42 0.38 0.74 0.71 75.10 36 2 V6 0.13 6.85 12.70 34.41 14.20 48 9.55 13.53 28.73 10.10 42 15.29 27.91 37.36 6.30 36 V8 14.01 2.36 1.50 2.83 36.00 48 0.16 0.50 1.32 32.30 42 2.30 0.72 2.70 28.80 36 V10 33.65 0.68 0.61 — 67.40 48 0.50 0.48 — 63.40 42 0.46 0.45 — 60.60 36 3 V12 0.11 12.24 16.40 35.20 13.40 48 13.40 16.84 34.12 9.90 42 18.36 22.63 38.54 6.10 36 V13 9.40 7.04 6.14 10.07 23.30 48 4.09 4.06 3.93 19.60 42 7.54 9.45 10.20 16.30 36 V17 52.63 0.67 — 3.02 73.30 48 0.16 — 0.80 70.70 42 0.42 — 2.74 68.10 36 表 5 测点位移统计结果
Table 5. Statistical results of displacement of measuring points
Test sequence Measure point Maximum displacement/mm Final displacement/mm Blasting distance/m Charge/kg 1 D2 2.52 1.14 25.90 48 D3 2.37 1.05 43.10 48 D4 — — 54.20 48 D5 0.97 0 81.20 48 2 D7 1.90 0.12 29.80 48 D8 0.89 0 36.00 48 D9 1.24 0 46.60 48 D11 0.34 0.27 93.50 48 3 D13 3.27 2.69 23.30 48 D14 0.55 0.20 47.40 48 D15 0.56 0.22 53.70 48 D16 0.40 0.25 65.40 48 D17 0.29 0.27 73.30 48 表 6 萨道夫斯基公式的拟合结果
Table 6. Fitting results of Sadoevsky formula
Test sequence Direction k α R2 1 x 56.86 0.818 0.720 y 43.14 0.973 0.965 z 48.96 0.619 0.722 2 x 36.46 1.307 0.975 y 78.02 1.577 0.967 z 81.86 1.037 0.719 3 x 36.14 1.004 0.929 y 43.48 0.973 0.817 z 83.67 1.055 0.772 表 7 考虑高程效应的拟合结果
Table 7. Fitting results considering elevation effect
Test sequence Direction k α β R2 1 x 3.48 0.703 −0.673 0.974 y 21.12 1.069 −0.190 0.968 z 4.24 0.588 −0.590 0.997 2 x 22.59 1.242 −0.106 0.981 y 27.20 1.606 −0.269 0.982 z 7.81 0.749 −0.516 0.965 3 x 22.53 0.846 −0.086 0.929 y 19.88 0.696 −0.137 0.910 z 15.03 0.542 −0.317 0.976 -
[1] 盛谦. 深挖岩质边坡开挖扰动区与工程岩体力学性状研究 [J]. 岩石力学与工程学报, 2003, 22(10): 1761. doi: 10.3321/j.issn:1000-6915.2003.10.035SHENG Q. Excavation disturbed zone of deep cutting rock slopes and mechanics behaviour of engineering rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1761. doi: 10.3321/j.issn:1000-6915.2003.10.035 [2] LIU D A, YANG Z F, TANG C H, et al. An automatic monitoring system for the shiplock slope of Wuqiangxi Hydropower Station [J]. Engineering Geology, 2004, 76(1/2): 79–91. doi: 10.1016/j.enggeo.2004.06.007 [3] 陈明, 卢文波, 李鹏, 等. 岩质边坡爆破振动速度的高程放大效应研究 [J]. 岩石力学与工程学报, 2011, 30(11): 2189–2195.CHEN M, LU W B, LI P, et al. Elevation amplification effect of blasting vibration velocity in rock slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2189–2195. [4] 蒋楠, 周传波, 平雯, 等. 岩质边坡爆破振动速度高程效应 [J]. 中南大学学报(自然科学版), 2014, 45(1): 237–243.JIANG N, ZHOU C B, PING W, et al. Altitude effect of blasting vibration velocity in rock slopes [J]. Journal of Central South University (Science and Technology), 2014, 45(1): 237–243. [5] AZIZABADI H R M, MANSOURI H, FOUCHÉ O. Coupling of two methods, waveform superposition and numerical, to model blast vibration effect on slope stability in jointed rock masses [J]. Computers and Geotechnics, 2014, 61: 42–49. doi: 10.1016/j.compgeo.2014.04.008 [6] HU Y G, LU W B, WU X X, et al. Numerical and experimental investigation of blasting damage control of a high rock slope in a deep valley [J]. Engineering Geology, 2018, 237: 12–20. doi: 10.1016/j.enggeo.2018.01.003 [7] 唐旭, 方正峰, 邹飞. 基于FLAC3D的岩质边坡爆破动力响应规律研究 [J]. 人民长江, 2019, 50(3): 198–204. doi: 10.16232/j.cnki.1001-4179.2019.03.035TANG X, FANG Z F, ZOU F. Study on dynamic response laws of rock slope blasting based on FLAC3D [J]. Yangtze River, 2019, 50(3): 198–204. doi: 10.16232/j.cnki.1001-4179.2019.03.035 [8] 孙鹏昌, 卢文波, 雷振, 等. 单薄山体岩质高边坡爆破振动响应分析及安全控制 [J]. 岩土工程学报, 2021, 43(5): 877–885. doi: 10.11779/CJGE202105011SUN P C, LU W B, LEI Z, et al. Blasting vibration response and control of high rock slopes of thin mountain [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 877–885. doi: 10.11779/CJGE202105011 [9] 李维光. 爆破振动作用下顺层岩质边坡稳定性研究 [D]. 成都: 西南交通大学, 2008.LI W G. Study on stability in rocky layered slope under blasting vibration [D]. Chengdu: Southwest Jiaotong University, 2008. [10] 王智德, 江俐敏, 祝文化, 等. 顺层岩质边坡爆破荷载作用下的振动传播规律研究 [J]. 爆破, 2019, 36(1): 55–62, 83. doi: 10.3963/j.issn.1001-487X.2019.01.009WANG Z D, JIANG L M, ZHU W H, et al. Vibration propagation characteristics of bedding rock slope under blasting loads [J]. Blasting, 2019, 36(1): 55–62, 83. doi: 10.3963/j.issn.1001-487X.2019.01.009 [11] 厉美杰, 杜军, 王洪强, 等. 爆破振动对露天矿山永久边坡稳定性的影响分析 [J]. 爆破, 2023, 40(1): 170–176. doi: 10.3963/j.issn.1001-487X.2023.01.023LI M J, DU J, WANG H Q, et al. Influence analysis of blasting vibration on stability of permanent slope in open-pit mine [J]. Blasting, 2023, 40(1): 170–176. doi: 10.3963/j.issn.1001-487X.2023.01.023 [12] 张祺. 爆破作用下软硬互层斜坡动力响应及破坏机理研究 [D]. 成都: 成都理工大学, 2019.ZHANG Q. Study on dynamic response characteristics and failure mechanism of soft and hard interlayer slopes under blasting [D]. Chengdu: Chengdu University of Technology, 2019. [13] 肖正学, 郭学彬, 张继春, 等. 含软弱夹层顺倾边坡爆破层裂效应的数值模拟与试验研究 [J]. 岩土力学, 2009, 30(Suppl 1): 15–18, 23. doi: 10.3969/j.issn.1000-7598.2009.z1.004XIAO Z X, GUO X B, ZHANG J C, et al. Numerical simulation and test of lamination effect caused by blasting in layered rock slope with weak intercalated layer [J]. Rock and Soil Mechanics, 2009, 30(Suppl 1): 15–18, 23. doi: 10.3969/j.issn.1000-7598.2009.z1.004 [14] 王智德, 夏元友, 周雄, 等. 顺层岩质边坡爆破的振动控制及损伤特性 [J]. 爆炸与冲击, 2017, 37(1): 27–36. doi: 10.11883/1001-1455(2017)01-0027-10WANG Z D, XIA Y Y, ZHOU X, et al. Blasting vibration control and damage characteristics of bedding rock slopes [J]. Explosion and Shock Waves, 2017, 37(1): 27–36. doi: 10.11883/1001-1455(2017)01-0027-10 [15] 刘蕾, 陈亮, 崔振华, 等. 逆层岩质边坡地震动力破坏过程FLAC/PFC2D耦合数值模拟分析 [J]. 工程地质学报, 2014, 22(6): 1257–1262. doi: 10.13544/j.cnki.jeg.2014.06.033LIU L, CHEN L, CUI Z H, et al. FLAC/PFC2D hybrid simulation for seismically induced failure process of toppling rock slope [J]. Journal of Engineering Geology, 2014, 22(6): 1257–1262. doi: 10.13544/j.cnki.jeg.2014.06.033 [16] 中华人民共和国住房和城乡建设部. 水利水电工程地质勘察规范: GB 50487—2008 [S]. 北京: 中国计划出版社, 2009.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for engineering geological investigation of water resources and hydropower: GB 50487—2008 [S]. Beijing: China Planning Press, 2009. [17] 贺可强, 郭栋, 张朋, 等. 降雨型滑坡垂直位移方向率及其位移监测预警判据研究 [J]. 岩土力学, 2017, 38(12): 3649–3659. doi: 10.16285/j.rsm.2017.12.033HE K Q, GUO D, ZHANG P, et al. The direction ratio of vertical displacement for rainfall-induced landslides and its early warning criterion [J]. Rock and Soil Mechanics, 2017, 38(12): 3649–3659. doi: 10.16285/j.rsm.2017.12.033 [18] 张继奎, 蒋楠, 周传波, 等. 爆破振动影响下人体舒适度振动台试验及其评价体系构建 [J]. 工程科学学报, 2023, 45(2): 326–335. doi: 10.13374/j.issn2095-9389.2022.04.20.001ZHANG J K, JIANG N, ZHOU C B, et al. Vibrating table test of human comfort under blasting vibration and its evaluation system construction [J]. Chinese Journal of Engineering, 2023, 45(2): 326–335. doi: 10.13374/j.issn2095-9389.2022.04.20.001 [19] 朱斌, 蒋楠, 贾永胜, 等. 下穿燃气管道爆破振动效应现场试验研究 [J]. 岩石力学与工程学报, 2019, 38(12): 2582–2592. doi: 10.13722/j.cnki.jrme.2019.0183ZHU B, JIANG N, JIA Y S, et al. Field experiment on blasting vibration effect of underpass gas pipelines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2582–2592. doi: 10.13722/j.cnki.jrme.2019.0183 [20] 吉凌, 周传波, 张波, 等. 大断面隧道爆破作用下围岩动力响应特性与损伤效应研究 [J]. 铁道学报, 2021, 43(7): 161–168. doi: 10.3969/j.issn.1001-8360.2021.07.021JI L, ZHOU C B, ZHANG B, et al. Study on dynamic response and damage effect of surrounding rock in large tunnel under blasting excavation [J]. Journal of the China Railway Society, 2021, 43(7): 161–168. doi: 10.3969/j.issn.1001-8360.2021.07.021