Acoustic and Elastic Properties of Polycrystalline Potassium Sodium Niobate under High Pressures
-
摘要: 在压力和温度分别为10 GPa和1050 ℃的条件下制备了Na0.5K0.5NbO3陶瓷样品,采用超声干涉法测量了样品在不同静水压力下的压缩波速和剪切波速。通过三阶有限应变状态方程拟合,获得了多晶Na0.5K0.5NbO3的体积模量(172.6 GPa)和剪切模量(54.6 GPa)及其压力依赖性。研究发现,样品的杨氏模量随着压力的升高而增大。基于弹性模量数据,得到样品的泊松比为0.342,表明材料具有延展性,但在高压下展现出脆性。随着压力的升高,维氏硬度和断裂韧性均增强;通过经验模型,得到陶瓷样品的维氏硬度为2.40 GPa,断裂韧性为2.33 MPa·m1/2。基于弹性波速度和密度数据,推导出Na0.5K0.5NbO3陶瓷的徳拜温度为 513.1 K,Grüneisen常数γ为2.113。这些结果为评估Na0.5K0.5NbO3在高压下的声学性质和弹性相关的综合性质提供了科学依据,同时为Na0.5K0.5NbO3在高压下的工程应用提供了参考。Abstract: Polycrystalline Na0.5K0.5NbO3 ceramics were prepared under the condition of 10 GPa and 1050 ℃. The compression and shear wave velocities of the samples under various hydrostatic pressures were measured using ultrasonic interferometry. By fitting the third-order finite strain state equation, the bulk and shear moduli of polycrystalline Na0.5K0.5NbO3 and their pressure dependency were determined as 172.6 GPa, 54.6 GPa, 0.3 and 2.1, respectively. The sample shows a positive pressure dependence of Young’s modulus. Based on the elastic modulus data, the Poisson’s ratio was obtained as 0.342, indicating that the material was ductile and shows brittleness under high pressure. The Vickers hardness and fracture toughness also show positive pressure dependence. Using the empirical models, the Vickers hardness and fracture toughness of the ceramics were obtained as 2.40 GPa and 2.33 MPa·m1/2. Meanwhile, based on the elastic wave velocity and density data, the Debye temperature (513.1 K) and the Grüneisen constant (2.113) of Na0.5K0.5NbO3 ceramics were derived. Our results provide an experimental reference for evaluating the acoustic and elastic-related comprehensive properties of Na0.5K0.5NbO3 under high pressure, and a foundation for its engineering applications under extreme high-pressure conditions as well.
-
Key words:
- Na0.5K0.5NbO3 /
- high pressure /
- sound velocity /
- elasticity /
- hardness /
- fracture toughness
-
表 1 Na0.5K0.5NbO3陶瓷在高压下的原位超声弹性波速测量结果
Table 1. Experimental results of in-situ ultrasonic elastic wave velocity measurement of Na0.5K0.5NbO3 ceramics under high pressures
p/GPa L/mm ρ/(g·cm−3) vp/(km·s−1) vs/(km·s−1) K/GPa G/GPa E/GPa Θ/K $ \nu $ γ 2.660 0.820(4) 4.55(3) 7.53(2) 3.69(1) 175.1(2.6) 62.0(0.9) 166.5(2.5) 531.3(8.0) 0.342 2.063 3.450 0.820(4) 4.57(3) 7.59(2) 3.82(1) 174.3(2.6) 66.6(0.9) 177.1(2.7) 549.1(8.2) 0.331 1.980 4.280 0.818(4) 4.59(3) 7.62(2) 3.91(1) 173.1(2.6) 70.0(1.1) 185.1(2.8) 562.0(8.4) 0.322 1.916 5.050 0.817(4) 4.61(3) 7.65(2) 3.98(1) 172.5(2.6) 73.0(1.1) 192.0(2.9) 573.0(8.6) 0.314 1.866 6.170 0.815(4) 4.64(3) 7.68(2) 4.07(1) 171.7(2.6) 76.7(1.2) 200.4(3.0) 586.0(8.8) 0.306 1.808 7.230 0.813(4) 4.67(3) 7.72(2) 4.14(1) 171.7(2.6) 79.9(1.2) 207.5(3.1) 596.8(8.9) 0.299 1.764 8.230 0.812(4) 4.70(3) 7.75(2) 4.19(1) 172.6(2.6) 82.5(1.2) 213.4(3.2) 605.4(9.1) 0.294 1.736 9.170 0.811(4) 4.72(3) 7.79(2) 4.23(1) 173.8(2.6) 84.3(1.3) 217.8(3.3) 611.5(9.2) 0.291 1.719 10.830 0.808(4) 4.76(3) 7.84(2) 4.27(1) 176.8(2.6) 86.9(1.3) 224.0(3.4) 619.7(9.3) 0.289 1.705 表 2 Na0.5K0.5NbO3与结构相似的压电材料的体积模量、剪切模量和杨氏模量的对比
Table 2. Comparison of volumetric modulus, shear modulus, and Young’s modulus of Na0.5K0.5NbO3 and structurally similar piezoelectric materials
Sample K0/GPa G0/GPa E0/GPa Ref. Na0.5K0.5NbO3 172.6 54.6 154.3 This work Na0.5K0.5NbO3 83.3 45.3 115.0 Ref. [30] Na0.5K0.5NbO3 127.7 47.2 126.0 Ref. [31] C-KNbO3 195.49 127.21 298.45 Ref. [23] C-KNbO3 147.33 102.37 249.36 Ref. [24] O-KNbO3 110.2 57.7 147.5 Ref. [25] O-KNbO3 173.62 82.76 181.97 Ref. [26] O-KNbO3 172.89 53.44 145.35 Ref. [27] NaNbO3 181.76 233.5 490.52 Ref. [28] NaNbO3 193.85 108.41 274.12 Ref. [29] -
[1] JAFFE B, COOK W R JR, JAFFE H. Piezoelectric ceramics [M]. New York: Academic Press, 1971. [2] LINES M E, GLASS A M. Principles and applications of ferroelectrics and related materials [M]. Oxford: Clarendon Press, 1977. [3] YOU Y M, LIAO W Q, ZHAO D W, et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response [J]. Science, 2017, 357(6348): 306–309. doi: 10.1126/science.aai8535 [4] SHIRANE G, SAWAGUCHI E, TAKAGI Y. Dielectric properties of lead zirconats [J]. Physical Review, 1951, 84(3): 476–481. doi: 10.1103/PhysRev.84.476 [5] LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics [J]. Physical Review Letters, 2009, 103(25): 257602. doi: 10.1103/PhysRevLett.103.257602 [6] 肖定全, 吴文娟, 梁文峰, 等. 钙钛矿型铌酸盐系无铅压电陶瓷材料与器件的研究进展 [J]. 材料导报, 2010, 24(15): 1–12.XIAO D Q, WU W J, LIANG W F, et al. Research progress of peroskite structure niobate-based lead-free piezoelectric ceramics and devices [J]. Materials Review, 2010, 24(15): 1–12. [7] CROSS E. Lead-free at last [J]. Nature, 2004, 432(7013): 24–25. doi: 10.1038/nature03142 [8] SHROUT T R, ZHANG S J. Lead-free piezoelectric ceramics: alternatives for PZT? [J]. Journal of Electroceramics, 2007, 19(1): 113–126. doi: 10.1007/s10832-007-9047-0 [9] RÖDEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics [J]. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177. doi: 10.1111/j.1551-2916.2009.03061.x [10] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics [J]. Nature, 2004, 432(7013): 84–87. doi: 10.1038/nature03028 [11] BAH M, GIOVANNELLI F, SCHOENSTEIN F, et al. High electromechanical performance with spark plasma sintering of undoped K0.5Na0.5NbO3 ceramics [J]. Ceramics International, 2014, 40(5): 7473–7480. doi: 10.1016/j.ceramint.2013.12.097 [12] CORDERO F. Elastic properties and enhanced piezoelectric response at morphotropic phase boundaries [J]. Materials, 2015, 8(12): 8195–8245. doi: 10.3390/ma8125452 [13] JIANG X, ZHAO J J, JIANG X. Correlation between hardness and elastic moduli of the covalent crystals [J]. Computational Materials Science, 2011, 50(7): 2287–2290. doi: 10.1016/j.commatsci.2011.01.043 [14] CHEN X Q, NIU H Y, FRANCHINI C, et al. Hardness of T-carbon: density functional theory calculations [J]. Physical Review B, 2011, 84(12): 121405. doi: 10.1103/PhysRevB.84.121405 [15] NIU H Y, NIU S W, OGANOV A R. Simple and accurate model of fracture toughness of solids [J]. Journal of Applied Physics, 2019, 125(6): 065105. doi: 10.1063/1.5066311 [16] SANDITOV D S, DARMAEV M V, SANDITOV B D, et al. Grüneisen parameter and velocities of propagation of sound waves in rigid bodies [J]. Russian Physics Journal, 2009, 52(4): 386–389. doi: 10.1007/s11182-009-9239-y [17] PUGH S F. XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496 [18] ZHANG F P, LIU Y S, HE H L, et al. Electrical response of KNN lead free ferroelectric ceramics under shock compression [J]. AIP Conference Proceedings, 2018, 1979(1): 060012. doi: 10.1063/1.5044809 [19] GADELMAWLA A, ECKSTEIN U, RIESS K, et al. Temperature- and stress-dependent electromechanical properties of phase-boundary-engineered KNN-based piezoceramics [J]. Journal of the American Ceramic Society, 2023, 106(4): 2326–2337. doi: 10.1111/jace.18917 [20] WANG K, LI J F. (K,Na)NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement [J]. Journal of Advanced Ceramics, 2012, 1(1): 24–37. doi: 10.1007/s40145-012-0003-3 [21] ZHANG M H, WANG K, DU Y J, et al. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite [J]. Journal of the American Chemical Society, 2017, 139(10): 3889–3895. doi: 10.1021/jacs.7b00520 [22] LI Q Z, YANG X X, PENG F, et al. Elasticity, mechanical and thermal properties of submicron h -AlN: in-situ high pressure ultrasonic study [J]. Journal of the European Ceramic Society, 2021, 41(9): 4788–4793. doi: 10.1016/j.jeurceramsoc.2021.03.056 [23] XU Y Q, WU S Y, ZHANG L J, et al. First-principles study of structural, electronic, elastic, and optical properties of cubic KNbO3 and KTaO3 crystals [J]. Physica Status Solidi B, 2017, 254(5): 1600620. doi: 10.1002/pssb.201600620 [24] WIESENDANGER E. Dielectric, mechanical and optical properties of orthorhombic KNbO3 [J]. Ferroelectrics, 1973, 6(1): 263–281. doi: 10.1080/00150197408243977 [25] LI H, WANG L, XU L Z, et al. First-principles study on the structural, elastic, piezoelectric and electronic properties of (BaTiO3, LiTaO3)-modified KNbO3 [J]. Materials Today Communications, 2021, 26: 102092. doi: 10.1016/j.mtcomm.2021.102092 [26] XU Y Q, WU S Y, WU L N, et al. First-principles investigation on the structural, elastic, electronic and optical properties and possible mechanism of the photocatalytic properties for orthorhombic and tetragonal KNbO3 [J]. Materials Science in Semiconductor Processing, 2018, 75: 253–262. doi: 10.1016/j.mssp.2017.11.041 [27] KALINICHEV A G, BASS J D, ZHA C S, et al. Elastic properties of orthorhombic KNbO3 single crystals by Brillouin scattering [J]. Journal of Applied Physics, 1993, 74(11): 6603–6608. doi: 10.1063/1.355099 [28] KHATTAK S A, WABAIDUR S M, ISLAM A, et al. First-principles structural, elastic and optoelectronics study of sodium niobate and tantalate perovskites [J]. Scientific Reports, 2022, 12(1): 21700. doi: 10.1038/s41598-022-26250-7 [29] XU Y Q, WU S Y, WU L N, et al. Structural, elastic, electronic and optical properties of cubic NaNbO3 crystals under pressure [J]. International Journal of Modern Physics B, 2018, 32(25): 1850282. doi: 10.1142/S021797921850282X [30] JAEGER R E, EGERTON L. Hot pressing of potassium-sodium niobates [J]. Journal of the American Ceramic Society, 1962, 45(5): 209–213. doi: 10.1111/j.1151-2916.1962.tb11127.x [31] PINHO R, TKACH A, CARPENTER M A, et al. Elastic moduli of potassium sodium niobate ceramics: impact of spark plasma texturing [J]. Scripta Materialia, 2022, 218: 114837. doi: 10.1016/j.scriptamat.2022.114837 [32] ZOU Y T, LIU K, WANG P, et al. Sound velocities, elasticity, and mechanical properties of stoichiometric submicron polycrystalline δ-MoN at high pressure [J]. Inorganic Chemistry, 2021, 60(16): 11897–11906. doi: 10.1021/acs.inorgchem.1c00406 [33] LIU W, LI B S. Elasticity of amorphous zirconium tungstate at high pressure [J]. Applied Physics Letters, 2008, 93(19): 191904. doi: 10.1063/1.3023049 [34] ZOU Y T, ZHANG W, CHEN T, et al. Thermally induced anomaly in the shear behavior of magnetite at high pressure [J]. Physical Review Applied, 2018, 10(2): 024009. doi: 10.1103/PhysRevApplied.10.024009 [35] JACKSON I, PATERSON M S. A high-pressure, high-temperature apparatus for studies of seismic wave dispersion and attenuation [J]. Pure and Applied Geophysics, 1993, 141(2): 445–466. doi: 10.1007/BF00998339 [36] YONEDA A, MORIOKA M. Pressure derivatives of elastic constants of single crystal forsterite [M]//SYONO Y, MANGHNANI M H. High-pressure Research: Application to Earth and Planetary Sciences. Tokyo: Terra Scientific Publishing Company, 1992: 157–166. [37] REICHMANN H J, JACOBSEN S D, BALLARAN T B. Elasticity of franklinite and trends for transition-metal oxide spinels [J]. American Mineralogist, 2013, 98(4): 601–608. doi: 10.2138/am.2013.4294 [38] LI B S, LIEBERMANN R C. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry [J]. Physics of the Earth and Planetary Interiors, 2014, 233: 135–153. doi: 10.1016/j.pepi.2014.05.006 [39] SPETZLER H, SHEN A, CHEN G, et al. Ultrasonic measurements in a diamond anvil cell [J]. Physics of the Earth and Planetary Interiors, 1996, 98(1/2): 93–99. doi: 10.1016/S0031-9201(96)03171-8 [40] LI B S, KUNG J, LIEBERMANN R C. Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 559–574. doi: 10.1016/j.pepi.2003.09.020 [41] 陈晓芳, 贺端威, 王福龙, 等. 基于铰链式六面顶压机的二级6-8模超高压大腔体内置加热元件的设计与温度标定 [J]. 高压物理学报, 2009, 23(2): 98–104. doi: 10.11858/gywlxb.2009.02.004CHEN X F, HE D W, WANG F L, et al. Design and temperature calibration for heater cell of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press [J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 98–104. doi: 10.11858/gywlxb.2009.02.004 [42] 王海阔, 贺端威, 许超, 等. 基于国产铰链式六面顶压机的大腔体静高压技术研究进展 [J]. 高压物理学报, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001WANG H K, HE D W, XU C, et al. Development of large volume-high static pressure techniques based on the hinge-type cubic presses [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001 [43] 王福龙, 贺端威, 房雷鸣, 等. 基于铰链式六面顶压机的二级6-8型大腔体静高压装置 [J]. 物理学报, 2008, 57(9): 5429–5434. doi: 10.7498/aps.57.5429WANG F L, HE D W, FANG L M, et al. Design and assembly of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press [J]. Acta Physica Sinica, 2008, 57(9): 5429–5434. doi: 10.7498/aps.57.5429 [44] WANG X B, CHEN T, QI X T, et al. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus [J]. Journal of Applied Physics, 2015, 118(6): 065901. doi: 10.1063/1.4928147 [45] CHEN T, GWANMESIA G D, WANG X B, et al. Anomalous elastic properties of coesite at high pressure and implications for the upper mantle X-discontinuity [J]. Earth and Planetary Science Letters, 2015, 412: 42–51. doi: 10.1016/j.jpgl.2014.12.025 [46] LI B S, CHEN K, KUNG J, et al. Sound velocity measurement using transfer function method [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 11337–11342. doi: 10.1088/0953-8984/14/44/478 [47] ZOU Y T, WANG X B, CHEN T, et al. Hexagonal-structured ε-NbN: ultra-incompressibility, high shear rigidity and a possible hard superconducting material [J]. Scientific Reports, 2015, 5(1): 10811. doi: 10.1038/srep10811 [48] COOK R K. Variation of elastic constants and static strains with hydrostatic pressure: a method for calculation from ultrasonic measurements [J]. The Journal of the Acoustical Society of America, 1957, 29(4): 445–449. doi: 10.1121/1.1908922 [49] ZOU Y T, LI Y, CHEN H Y, et al. Thermoelasticity and anomalies in the pressure dependence of phonon velocities in niobium [J].Applied Physics Letters, 2018, 112(1): 011901. doi: 10.1063/1.5009617 [50] BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809 [51] GU J F, ZOU J, LIU J H, et al. Sintering highly dense ultra-high temperature ceramics with suppressed grain growth [J]. Journal of the European Ceramic Society, 2020, 40(4): 1086–1092. doi: 10.1016/j.jeurceramsoc.2019.11.056 [52] MA D J, KOU Z L, LIU Y J, et al. Sub-micron binderless tungsten carbide sintering behavior under high pressure and high temperature [J]. International Journal of Refractory Metals and Hard Materials, 2016, 54: 427–432. doi: 10.1016/j.ijrmhm.2015.10.001 [53] JACOBSEN M K, VELISAVLJEVIC N, KONO Y, et al. Shear-driven instability in zirconium at high pressure and temperature and its relationship to phase-boundary behaviors [J]. Physical Review B, 2017, 95(13): 134101. doi: 10.1103/PhysRevB.95.134101 [54] SANDITOV D S, BELOMESTNYKH V N. Relation between the parameters of the elasticity theory and averaged bulk modulus of solids [J]. Technical Physics, 2011, 56(11): 1619–1623. doi: 10.1134/S106378421111020X [55] LEDBETTER H, LEI M, KIM S. Elastic constants, debye temperatures, and electron-phonon parameters of superconducting cuprates and related oxides [J]. Phase Transitions, 1990, 23(1): 61–70. doi: 10.1080/01411599008241819 [56] HE R Q, FANG L M, CHEN X P, et al. Experimental study of covalent Cr3C2 with high ionicity: sound velocities, elasticity, and mechanical properties under high pressure [J]. Scripta Materialia, 2023, 224: 115146. doi: 10.1016/j.scriptamat.2022.115146 [57] FRANTSEVICH I N, VORONOV F F, BOKUTA S A. Elastic constants and elastic moduli of metals and insulators handbook [M]. Kiev: Naukova Dumka, 1983. [58] PETROVA E, ERMILOV S, SU R, et al. Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions [J]. Optics Express, 2013, 21(21): 25077–25090. doi: 10.1364/OE.21.025077 [59] CHEN X Q, NIU H Y, LI D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J].Intermetallics, 2011, 19(9): 1275–1281. doi: 10.1016/j.intermet.2011.03.026 [60] LIANG H, LIN W T, WANG Q M, et al. Ultrahard and stable nanostructured cubic boron nitride from hexagonal boron nitride [J]. Ceramics International, 2020, 46(8): 12788–12794. doi: 10.1016/j.ceramint.2020.02.048 [61] KVASHNIN A G, ALLAHYARI Z, OGANOV A R. Computational discovery of hard and superhard materials [J]. Journal of Applied Physics, 2019, 126(4): 040901. doi: 10.1063/1.5109782