Secondary Damage Response of Cracked Tunnels under Explosion
-
摘要: 服役中的隧道结构通常存在初始裂损,当遇到爆炸作用时,隧道结构性能会受到影响。利用多级背景网格物质点法对爆炸作用下带裂损的地铁隧道的二次损伤响应规律进行了数值模拟。结果表明:在爆炸作用下,初始裂损的存在会导致衬砌结构的刚度下降,轨行区底板产生更大范围的损伤,二次损伤面积增大34.2%,此外,初始裂损会加快隧道结构的损伤速度。初始裂损的深度和长度会显著改变隧道结构及围岩的动力响应,随着衬砌裂缝深度增加,轨行区底板二次损伤面积近线性增加,当裂缝深度为衬砌厚度的一半时,围岩等效塑性应变峰值的增速最快;随着衬砌裂缝长度的增加,轨行区底板二次损伤面积、围岩塑性应变峰值和位移峰值逐渐增大,但增速逐渐减缓。Abstract: Tunnel structures in service usually have initial cracking damage, which can affect the tunnel structure when exposed to explosive. In this paper, the secondary damage and response law of the subway tunnel with crack under explosion were simulated by using the material point method with multistage background grid. Under the explosion, the initial crack damage causes a decrease of the stiffness of the lining structure, and increases the damage range of the tunnel floor by 34.2% at the track zone. Besides, the initial crack accelerates the damage speed of the tunnel structure. The depth and length of the initial crack damage significantly alter the dynamic response of the tunnel structure and surrounding rock. The secondary damage area of the track floor increases linearly with the crack depth. When the crack depth reaches half of the lining thickness, the equivalent plastic strain peak increases the fastest. Moreover, the secondary damage area at the track floor, the peak plastic strain, and the peak displacement of the surrounding rock, all increase with the lining crack length, but the growth rate slows down gradually.
-
Key words:
- subway tunnel /
- initial crack /
- explosion loading /
- secondary damage /
- material point method
-
表 1 混凝土结构的物理力学参数
Table 1. Physical and mechanical parameters of the concrete structure
$f'{_{ \mathrm{c} } ^{ { {} } } }$/MPa $\rho /(\rm{kg\cdot {m}^{-3}})$ $ E/{\rm{GPa}} $ $ \nu $ $ A $ $ B $ $ n $ $ C $ ${S}_{ \mathrm{m}\mathrm{a}\mathrm{x} }$ ${D}{_{1} }$ ${D}{_{2} }$ 40 2400 32.5 0.2 0.79 1.6 0.61 0.007 7.0 0.04 1.0 ${\varepsilon }{_{\mathrm{m}\mathrm{i}\mathrm{n} }^{\mathrm{f} } }$ ${p}{_{\mathrm{c}\mathrm{r}\mathrm{u}\mathrm{s}\mathrm{h} }}/{\rm{GPa}}$ ${p} {_{\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k} } }/{\rm{GPa}}$ ${\mu }{_{\mathrm{c}\mathrm{r}\mathrm{u}\mathrm{s}\mathrm{h} }}$ ${\mu }{_{\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k} } }$ ${K}{_{1}}/{\rm{GPa}}$ ${K}{_{2}}/{\rm{GPa}}$ ${K}{_{3}}/{\rm{GPa}}$ $ T/{\rm{GPa}} $ ${v }{_{\mathrm{p} } }/(\rm{m\cdot {s}^{-1}})$ ${v }{_{\mathrm{s} } }/(\rm{m\cdot {s}^{-1}})$ 0.01 0.016 0.8 0.001 0.1 85 −171 208 0.004 3870 2375 表 2 围岩的物理力学参数
Table 2. Physical and mechanical parameters of the surrounding rock mass
${\rho }{_{\mathrm{} } }/(\mathrm{g}\cdot{\mathrm{c}\mathrm{m} }^{-3})$ ${E}{_{\mathrm{} } }/{\rm{GPa} }$ ${\nu }{_{\mathrm{} } }$ ${q}{_{\mathrm{\phi } } }$ ${k}{_{\mathrm{\phi } }}/{\rm{kPa}}$ ${q}{_{\mathrm{\psi }} }$/(°) ${\sigma }{_{\mathrm{t} } }/{\rm{kPa} }$ ${v}{_{\mathrm{p} } }/(\rm{m\cdot {s}^{-1} })$ ${v}{_{\mathrm{s} }}/(\rm{m\cdot {s}^{-1} })$ 1.85 0.1 0.35 0.404 11.11 0 0.1 185 89 表 3 空气的物理力学参数
Table 3. Physical and mechanical parameters of the air model
${\rho }_{ }/(\mathrm{k}\mathrm{g}\cdot {\mathrm{m} }^{-3})$ ${D}_{\mathrm{} }/(\rm{m\cdot{s}^{-1} })$ $ \kappa $ ${E}_{0}^{\mathrm{} }/(\mathrm{M}\mathrm{J}\cdot {\mathrm{m} }^{-3})$ ${v}{_{\mathrm{p} } }/(\rm{m\cdot {s}^{-1} })$ ${v}{_{\mathrm{s} } }/(\rm{m\cdot {s}^{-1} })$ 1.29 340 1.4 0 340 0 表 4 固体炸药的JWL状态方程参数
Table 4. Parameters of the solid explosive in JWL equation of state
${\rho }{_{0} }/(\mathrm{k}\mathrm{g}\cdot{\mathrm{m} }^{-3})$ ${p}_{\mathrm{C}\mathrm{J} }/\rm{GPa}$ ${D}_{\mathrm{J} }/(\rm{m\cdot{s}^{-1} })$ $ \gamma $ ${E}_{0}/(\mathrm{k}\mathrm{J}\cdot{\mathrm{c}\mathrm{m} }^{-3})$ 1500 21.0 6930 2.727 7.0 ${A}_{\mathrm{J} }/\rm{GPa}$ ${B}_{\mathrm{J} }/\rm{GPa}$ $ {R}_{1} $ $ {R}_{2} $ $ \omega $ 371.2 3.23 4.15 0.95 0.30 表 5 有、无裂损情况下爆炸作用下地铁隧道结构和围岩的响应情况对比
Table 5. Comparison of responses of tunnel structure and surrounding rock under explosion charge for the cases of cracked tunnel and complete tunnel
Condition $ {p}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{s}} $/MPa $ {d}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{r}} $/m ${\varepsilon }_{\mathrm{p,}\mathrm{m}\mathrm{a}\mathrm{x} }^{\mathrm{r} }$ $ {d}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{s}} $/m $ {S}_{\mathrm{f}} $/m2 Complete tunnel 3.8 0.22 0.29 0.04 1.21 Cracked tunnel 4.3 0.24 0.59 0.06 1.60 Variation/% 13.15 9.09 103.40 50.00 33.05 -
[1] 陈晶. 甲醇运输为何成“高爆炸弹”——晋济高速公路山西晋城段岩后隧道“3·1”特别重大道路交通危化品燃爆事故分析 [J]. 湖南安全与防灾, 2014(7): 44–45. doi: 10.3969/j.issn.1007-9947.2014.07.015 [2] LI P J, CHEN C S, CHANG H P, et al. Explosion mechanism analysis during tunnel construction in the Zengwen reservoir [J]. Tunnelling and Underground Space Technology, 2020, 97: 103279. doi: 10.1016/j.tust.2019.103279 [3] YU H T, YUAN Y, YU G X, et al. Evaluation of influence of vibrations generated by blasting construction on an existing tunnel in soft soils [J]. Tunnelling and Underground Space Technology, 2014, 43: 59–66. doi: 10.1016/j.tust.2014.04.005 [4] PROCHAZKA P, JANDEKOVÁ D. Effect of explosion source location on tunnel damage [J]. International Journal of Protective Structures, 2020, 11(4): 448–467. doi: 10.1177/2041419620907924 [5] PENG Y X, LIU G J, WU L, et al. Comparative study on tunnel blast-induced vibration for the underground cavern group [J]. Environmental Earth Sciences, 2021, 80(2): 68. doi: 10.1007/s12665-020-09362-z [6] ZHAO Y T, CHU C, VAFEIDIS A, et al. Vibration of a cylindrical tunnel under a centric point-source explosion [J]. Shock and Vibration, 2017, 2017: 9152632. [7] MEI W Q, XIA Y Y, PAN P Z, et al. Transient responses of deep-buried unlined tunnels subjected to blasting P wave [J]. Computers and Geotechnics, 2022, 146: 104729. doi: 10.1016/j.compgeo.2022.104729 [8] MOBARAKI B, VAGHEFI M. Numerical study of the depth and cross-sectional shape of tunnel under surface explosion [J]. Tunnelling and Underground Space Technology, 2015, 47: 114–122. doi: 10.1016/j.tust.2015.01.003 [9] DENG X F, ZHU J B, CHEN S G, et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses [J]. Tunnelling and Underground Space Technology, 2014, 43: 88–100. doi: 10.1016/j.tust.2014.04.004 [10] CHEN S J, ZHU Z G. Numerical study on tunnel damage subject to blast loads in jointed rock masses [J]. Environmental Earth Sciences, 2022, 81(24): 548. doi: 10.1007/s12665-022-10676-3 [11] 王桂林, 欧阳啸天, 翟俊, 等. 浅埋三舱管廊甲烷爆炸的地面响应规律 [J]. 高压物理学报, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616WANG G L, OUYANG X T, ZHAI J, et al. Ground response law of methane explosion in shallow buried three-cabin pipe gallery [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616 [12] MA J X. Numerical modelling of underwater structural impact damage problems based on the material point method [J]. International Journal of Hydromechatronics, 2019, 2(4): 99–110. doi: 10.1504/IJHM.2019.104385 [13] XU S S, MA E L, LAI J X, et al. Diseases failures characteristics and countermeasures of expressway tunnel of water-rich strata: a case study [J]. Engineering Failure Analysis, 2022, 134: 106056. doi: 10.1016/j.engfailanal.2022.106056 [14] 肖同刚, 王如路. 上海地铁运营隧道病害治理与控制技术 [C]//地下交通工程与工程安全——第五届中国国际隧道工程研讨会文集. 上海: 同济大学出版社, 2011. [15] 葛双双, 高玮, 汪义伟, 等. 我国交通盾构隧道病害、评价及治理研究综述 [J]. 土木工程学报, 2023, 56(1): 119–128. doi: 10.15951/j.tmgcxb.21111120GE S S, GAO W, WANG Y W, et al. Review on evaluation and treatment of traffic shield tunnel defects in China [J]. China Civil Engineering Journal, 2023, 56(1): 119–128. doi: 10.15951/j.tmgcxb.21111120 [16] 王剑宏, 解全一, 刘健, 等. 日本铁路隧道病害和运维管理现状及对我国隧道运维技术发展的建议 [J]. 隧道建设, 2020, 40(12): 1824–1833. doi: 10.3973/j.issn.2096-4498.2020.12.018WANG J H, XIE Q Y, LIU J, et al. Research on diseases and current situation of operation maintenance management of Japanese railway tunnels and suggestions [J]. Tunnel Construction, 2020, 40(12): 1824–1833. doi: 10.3973/j.issn.2096-4498.2020.12.018 [17] 曹淞宇, 王士民, 刘川昆, 等. 裂缝位置对盾构隧道管片结构破坏形态的影响 [J]. 东南大学学报(自然科学版), 2020, 50(1): 120–128. doi: 10.3969/j.issn.1001-0505.2020.01.016CAO S Y, WANG S M, LIU C K, et al. Influence of crack location on failure mode of shield tunnel lining structure [J]. Journal of Southeast University (Natural Science Edition), 2020, 50(1): 120–128. doi: 10.3969/j.issn.1001-0505.2020.01.016 [18] 刘学增, 包浩杉, 周敏. 纵向裂缝对隧道钢筋混凝土衬砌结构影响的试验 [J]. 上海交通大学学报, 2012, 46(3): 441–445. doi: 10.16183/j.cnki.jsjtu.2012.03.019LIU X Z, BAO H S, ZHOU M. Experimental study on the effect of longitudinal crack on reinforced concrete tunnel lining [J]. Journal of Shanghai Jiaotong University, 2012, 46(3): 441–445. doi: 10.16183/j.cnki.jsjtu.2012.03.019 [19] 段绍立. 基于混凝土开裂特征的隧道支护结构安全评价方法研究 [D]. 成都: 西南交通大学, 2016.DUAN S L. Study on safety evaluation method of tunnel supporting structure based on characteristics of cracked concrete [D]. Chengdu: Southwest Jiaotong University, 2016. [20] MA S, ZHANG X, LIAN Y P, et al. Simulation of high explosive explosion using adaptive material point method [J]. Computer Modeling in Engineering and Sciences, 2009, 39(2): 101–123. [21] 杨鹏飞. 局部化破坏问题的物质点法研究 [D]. 北京: 清华大学, 2013.YANG P F. Material point method for localized failure problems [D]. Beijing: Tsinghua University, 2013. [22] BARDENHAGEN S G, BRACKBILL J U, SULSKY D. The material-point method for granular materials [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3/4): 529–541. [23] 张雄, 廉艳平, 刘岩, 等. 物质点法 [M]. 北京: 清华大学出版社, 2013. [24] 赵晓宁. 高速弹体对混凝土侵彻效应研究 [D]. 南京: 南京理工大学, 2011.ZHAO X N. Study on the effect of projectiles high-velocity normal penetrating into concrete targets [D]. Nanjing: Nanjing University of Science & Technology, 2011. [25] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strain, high strain rates, and high pressures [C]//14th International Symposium on Ballistics. Quebec, Canada, 1993. [26] YAN Q S, DU X L. Forecasting research of overpressure of explosive blast in subway tunnels [J]. Journal of Vibroengineering, 2015, 17(6): 3380–3391. [27] 刘川昆, 何川, 王士民, 等. 裂缝长度对盾构隧道管片结构破坏模式模型试验研究 [J]. 中南大学学报(自然科学版), 2019, 50(6): 1447–1456.LIU C K, HE C, WANG S M, et al. Model test study on failure mode of segment structure of shield tunnel with crack length [J]. Journal of Central South University (Science and Technology), 2019, 50(6): 1447–1456.