带裂损隧道在爆炸作用下的二次损伤响应规律

王桂林 余浩 翟俊 陈相宇 王润秋 龚晟

王桂林, 余浩, 翟俊, 陈相宇, 王润秋, 龚晟. 带裂损隧道在爆炸作用下的二次损伤响应规律[J]. 高压物理学报, 2023, 37(5): 055303. doi: 10.11858/gywlxb.20230656
引用本文: 王桂林, 余浩, 翟俊, 陈相宇, 王润秋, 龚晟. 带裂损隧道在爆炸作用下的二次损伤响应规律[J]. 高压物理学报, 2023, 37(5): 055303. doi: 10.11858/gywlxb.20230656
WANG Guilin, YU Hao, ZHAI Jun, CHEN Xiangyu, WANG Runqiu, GONG Sheng. Secondary Damage Response of Cracked Tunnels under Explosion[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055303. doi: 10.11858/gywlxb.20230656
Citation: WANG Guilin, YU Hao, ZHAI Jun, CHEN Xiangyu, WANG Runqiu, GONG Sheng. Secondary Damage Response of Cracked Tunnels under Explosion[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055303. doi: 10.11858/gywlxb.20230656

带裂损隧道在爆炸作用下的二次损伤响应规律

doi: 10.11858/gywlxb.20230656
基金项目: 国家重点研发计划(2018YFB2101000)
详细信息
    作者简介:

    王桂林(1970-),男,博士,教授,主要从事岩土工程研究. E-mail:glw@cqu.edu.cn

  • 中图分类号: O382

Secondary Damage Response of Cracked Tunnels under Explosion

  • 摘要: 服役中的隧道结构通常存在初始裂损,当遇到爆炸作用时,隧道结构性能会受到影响。利用多级背景网格物质点法对爆炸作用下带裂损的地铁隧道的二次损伤响应规律进行了数值模拟。结果表明:在爆炸作用下,初始裂损的存在会导致衬砌结构的刚度下降,轨行区底板产生更大范围的损伤,二次损伤面积增大34.2%,此外,初始裂损会加快隧道结构的损伤速度。初始裂损的深度和长度会显著改变隧道结构及围岩的动力响应,随着衬砌裂缝深度增加,轨行区底板二次损伤面积近线性增加,当裂缝深度为衬砌厚度的一半时,围岩等效塑性应变峰值的增速最快;随着衬砌裂缝长度的增加,轨行区底板二次损伤面积、围岩塑性应变峰值和位移峰值逐渐增大,但增速逐渐减缓。

     

  • 图  地铁隧道基础模型

    Figure  1.  Foundation model of the subway tunnel

    图  验证模型

    Figure  2.  Validated model

    图  FEM与MPM方法获得的爆炸作用下带裂损隧道在拱底和拱顶处的压强结果对比

    Figure  3.  Comparison of the pressures at arch base and arch vault of the cracked tunnel under explosion obtained by FEM and MPM

    图  两种方法获得的带裂损隧道底板中心的损伤因子

    Figure  4.  Comparison of the damage factors at the central floor of the cracked tunnel obtained by two methods

    图  100 ms时隧道及围岩在横、纵截面上的位移分布云图

    Figure  5.  Displacement distribution at the cross and longitudinal sections of the tunnel and surrounding rock at 100 ms

    图  隧道不同位置处的响应压强随时间变化曲线

    Figure  6.  Pressure versus time at different positions of the tunnel

    图  1 ms时隧道在横、纵截面的压强分布

    Figure  7.  Pressure distribution at the cross and longitudinal sections of the tunnel model at 1 ms

    图  100 ms时有裂损隧道的衬砌结构在横、纵截面上的损伤因子分布

    Figure  8.  Damage distribution at the cross and longitudinal sections of the lining structure of the cracked tunnel at 100 ms

    图  100 ms时隧道轨行区底板的损伤因子分布

    Figure  9.  Damage distribution at the tunnel floor in the track zone at 100 ms

    图  10  隧道轨行区底板中心质点的损伤因子随时间的变化曲线

    Figure  10.  Damage versus time at the central tunnel floor in the track zone

    图  11  100 ms时横、纵截面上围岩的等效塑性应变分布

    Figure  11.  Distribution of equivalent plastic strain at the cross and longitudinal sections of the surrounding rock at 100 ms

    图  12  轨行区损伤面积及围岩塑性应变峰值随裂缝深度的变化情况

    Figure  12.  Variations of the damage area in the track zoneand the peak value of equivalent plastic strainof the surrounding rock with crack depth

    图  13  轨行区损伤面积及隧道结构响应压强峰值随裂缝长度的变化

    Figure  13.  Variations of the damage area in the track zone and the peak value of response pressure of tunnel structre with crack depth

    图  14  围岩等效塑性应变峰值和位移峰值随裂缝长度的变化

    Figure  14.  Variations of the peak values of equivalent plastic strain and displacement of the surrounding rock with crack length

    表  1  混凝土结构的物理力学参数

    Table  1.   Physical and mechanical parameters of the concrete structure

    $f'{_{ \mathrm{c} } ^{ { {} } } }$/MPa $\rho /(\rm{kg\cdot {m}^{-3}})$ $ E/{\rm{GPa}} $ $ \nu $ $ A $ $ B $ $ n $ $ C $ ${S}_{ \mathrm{m}\mathrm{a}\mathrm{x} }$ ${D}{_{1} }$ ${D}{_{2} }$
    40 2400 32.5 0.2 0.79 1.6 0.61 0.007 7.0 0.04 1.0
    ${\varepsilon }{_{\mathrm{m}\mathrm{i}\mathrm{n} }^{\mathrm{f} } }$ ${p}{_{\mathrm{c}\mathrm{r}\mathrm{u}\mathrm{s}\mathrm{h} }}/{\rm{GPa}}$ ${p} {_{\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k} } }/{\rm{GPa}}$ ${\mu }{_{\mathrm{c}\mathrm{r}\mathrm{u}\mathrm{s}\mathrm{h} }}$ ${\mu }{_{\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k} } }$ ${K}{_{1}}/{\rm{GPa}}$ ${K}{_{2}}/{\rm{GPa}}$ ${K}{_{3}}/{\rm{GPa}}$ $ T/{\rm{GPa}} $ ${v }{_{\mathrm{p} } }/(\rm{m\cdot {s}^{-1}})$ ${v }{_{\mathrm{s} } }/(\rm{m\cdot {s}^{-1}})$
    0.01 0.016 0.8 0.001 0.1 85 −171 208 0.004 3870 2375
    下载: 导出CSV

    表  2  围岩的物理力学参数

    Table  2.   Physical and mechanical parameters of the surrounding rock mass

    ${\rho }{_{\mathrm{} } }/(\mathrm{g}\cdot{\mathrm{c}\mathrm{m} }^{-3})$ ${E}{_{\mathrm{} } }/{\rm{GPa} }$ ${\nu }{_{\mathrm{} } }$ ${q}{_{\mathrm{\phi } } }$ ${k}{_{\mathrm{\phi } }}/{\rm{kPa}}$ ${q}{_{\mathrm{\psi }} }$/(°) ${\sigma }{_{\mathrm{t} } }/{\rm{kPa} }$ ${v}{_{\mathrm{p} } }/(\rm{m\cdot {s}^{-1} })$ ${v}{_{\mathrm{s} }}/(\rm{m\cdot {s}^{-1} })$
    1.85 0.1 0.35 0.404 11.11 0 0.1 185 89
    下载: 导出CSV

    表  3  空气的物理力学参数

    Table  3.   Physical and mechanical parameters of the air model

    ${\rho }_{ }/(\mathrm{k}\mathrm{g}\cdot {\mathrm{m} }^{-3})$ ${D}_{\mathrm{} }/(\rm{m\cdot{s}^{-1} })$ $ \kappa $ ${E}_{0}^{\mathrm{} }/(\mathrm{M}\mathrm{J}\cdot {\mathrm{m} }^{-3})$ ${v}{_{\mathrm{p} } }/(\rm{m\cdot {s}^{-1} })$ ${v}{_{\mathrm{s} } }/(\rm{m\cdot {s}^{-1} })$
    1.29 340 1.4 0 340 0
    下载: 导出CSV

    表  4  固体炸药的JWL状态方程参数

    Table  4.   Parameters of the solid explosive in JWL equation of state

    ${\rho }{_{0} }/(\mathrm{k}\mathrm{g}\cdot{\mathrm{m} }^{-3})$ ${p}_{\mathrm{C}\mathrm{J} }/\rm{GPa}$ ${D}_{\mathrm{J} }/(\rm{m\cdot{s}^{-1} })$ $ \gamma $ ${E}_{0}/(\mathrm{k}\mathrm{J}\cdot{\mathrm{c}\mathrm{m} }^{-3})$
    1500 21.0 6930 2.727 7.0
    ${A}_{\mathrm{J} }/\rm{GPa}$ ${B}_{\mathrm{J} }/\rm{GPa}$ $ {R}_{1} $ $ {R}_{2} $ $ \omega $
    371.2 3.23 4.15 0.95 0.30
    下载: 导出CSV

    表  5  有、无裂损情况下爆炸作用下地铁隧道结构和围岩的响应情况对比

    Table  5.   Comparison of responses of tunnel structure and surrounding rock under explosion charge for the cases of cracked tunnel and complete tunnel

    Condition$ {p}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{s}} $/MPa$ {d}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{r}} $/m${\varepsilon }_{\mathrm{p,}\mathrm{m}\mathrm{a}\mathrm{x} }^{\mathrm{r} }$$ {d}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{s}} $/m$ {S}_{\mathrm{f}} $/m2
    Complete tunnel3.80.220.290.041.21
    Cracked tunnel4.30.240.590.061.60
    Variation/%13.159.09103.4050.0033.05
    下载: 导出CSV
  • [1] 陈晶. 甲醇运输为何成“高爆炸弹”——晋济高速公路山西晋城段岩后隧道“3·1”特别重大道路交通危化品燃爆事故分析 [J]. 湖南安全与防灾, 2014(7): 44–45. doi: 10.3969/j.issn.1007-9947.2014.07.015
    [2] LI P J, CHEN C S, CHANG H P, et al. Explosion mechanism analysis during tunnel construction in the Zengwen reservoir [J]. Tunnelling and Underground Space Technology, 2020, 97: 103279. doi: 10.1016/j.tust.2019.103279
    [3] YU H T, YUAN Y, YU G X, et al. Evaluation of influence of vibrations generated by blasting construction on an existing tunnel in soft soils [J]. Tunnelling and Underground Space Technology, 2014, 43: 59–66. doi: 10.1016/j.tust.2014.04.005
    [4] PROCHAZKA P, JANDEKOVÁ D. Effect of explosion source location on tunnel damage [J]. International Journal of Protective Structures, 2020, 11(4): 448–467. doi: 10.1177/2041419620907924
    [5] PENG Y X, LIU G J, WU L, et al. Comparative study on tunnel blast-induced vibration for the underground cavern group [J]. Environmental Earth Sciences, 2021, 80(2): 68. doi: 10.1007/s12665-020-09362-z
    [6] ZHAO Y T, CHU C, VAFEIDIS A, et al. Vibration of a cylindrical tunnel under a centric point-source explosion [J]. Shock and Vibration, 2017, 2017: 9152632.
    [7] MEI W Q, XIA Y Y, PAN P Z, et al. Transient responses of deep-buried unlined tunnels subjected to blasting P wave [J]. Computers and Geotechnics, 2022, 146: 104729. doi: 10.1016/j.compgeo.2022.104729
    [8] MOBARAKI B, VAGHEFI M. Numerical study of the depth and cross-sectional shape of tunnel under surface explosion [J]. Tunnelling and Underground Space Technology, 2015, 47: 114–122. doi: 10.1016/j.tust.2015.01.003
    [9] DENG X F, ZHU J B, CHEN S G, et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses [J]. Tunnelling and Underground Space Technology, 2014, 43: 88–100. doi: 10.1016/j.tust.2014.04.004
    [10] CHEN S J, ZHU Z G. Numerical study on tunnel damage subject to blast loads in jointed rock masses [J]. Environmental Earth Sciences, 2022, 81(24): 548. doi: 10.1007/s12665-022-10676-3
    [11] 王桂林, 欧阳啸天, 翟俊, 等. 浅埋三舱管廊甲烷爆炸的地面响应规律 [J]. 高压物理学报, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616

    WANG G L, OUYANG X T, ZHAI J, et al. Ground response law of methane explosion in shallow buried three-cabin pipe gallery [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
    [12] MA J X. Numerical modelling of underwater structural impact damage problems based on the material point method [J]. International Journal of Hydromechatronics, 2019, 2(4): 99–110. doi: 10.1504/IJHM.2019.104385
    [13] XU S S, MA E L, LAI J X, et al. Diseases failures characteristics and countermeasures of expressway tunnel of water-rich strata: a case study [J]. Engineering Failure Analysis, 2022, 134: 106056. doi: 10.1016/j.engfailanal.2022.106056
    [14] 肖同刚, 王如路. 上海地铁运营隧道病害治理与控制技术 [C]//地下交通工程与工程安全——第五届中国国际隧道工程研讨会文集. 上海: 同济大学出版社, 2011.
    [15] 葛双双, 高玮, 汪义伟, 等. 我国交通盾构隧道病害、评价及治理研究综述 [J]. 土木工程学报, 2023, 56(1): 119–128. doi: 10.15951/j.tmgcxb.21111120

    GE S S, GAO W, WANG Y W, et al. Review on evaluation and treatment of traffic shield tunnel defects in China [J]. China Civil Engineering Journal, 2023, 56(1): 119–128. doi: 10.15951/j.tmgcxb.21111120
    [16] 王剑宏, 解全一, 刘健, 等. 日本铁路隧道病害和运维管理现状及对我国隧道运维技术发展的建议 [J]. 隧道建设, 2020, 40(12): 1824–1833. doi: 10.3973/j.issn.2096-4498.2020.12.018

    WANG J H, XIE Q Y, LIU J, et al. Research on diseases and current situation of operation maintenance management of Japanese railway tunnels and suggestions [J]. Tunnel Construction, 2020, 40(12): 1824–1833. doi: 10.3973/j.issn.2096-4498.2020.12.018
    [17] 曹淞宇, 王士民, 刘川昆, 等. 裂缝位置对盾构隧道管片结构破坏形态的影响 [J]. 东南大学学报(自然科学版), 2020, 50(1): 120–128. doi: 10.3969/j.issn.1001-0505.2020.01.016

    CAO S Y, WANG S M, LIU C K, et al. Influence of crack location on failure mode of shield tunnel lining structure [J]. Journal of Southeast University (Natural Science Edition), 2020, 50(1): 120–128. doi: 10.3969/j.issn.1001-0505.2020.01.016
    [18] 刘学增, 包浩杉, 周敏. 纵向裂缝对隧道钢筋混凝土衬砌结构影响的试验 [J]. 上海交通大学学报, 2012, 46(3): 441–445. doi: 10.16183/j.cnki.jsjtu.2012.03.019

    LIU X Z, BAO H S, ZHOU M. Experimental study on the effect of longitudinal crack on reinforced concrete tunnel lining [J]. Journal of Shanghai Jiaotong University, 2012, 46(3): 441–445. doi: 10.16183/j.cnki.jsjtu.2012.03.019
    [19] 段绍立. 基于混凝土开裂特征的隧道支护结构安全评价方法研究 [D]. 成都: 西南交通大学, 2016.

    DUAN S L. Study on safety evaluation method of tunnel supporting structure based on characteristics of cracked concrete [D]. Chengdu: Southwest Jiaotong University, 2016.
    [20] MA S, ZHANG X, LIAN Y P, et al. Simulation of high explosive explosion using adaptive material point method [J]. Computer Modeling in Engineering and Sciences, 2009, 39(2): 101–123.
    [21] 杨鹏飞. 局部化破坏问题的物质点法研究 [D]. 北京: 清华大学, 2013.

    YANG P F. Material point method for localized failure problems [D]. Beijing: Tsinghua University, 2013.
    [22] BARDENHAGEN S G, BRACKBILL J U, SULSKY D. The material-point method for granular materials [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3/4): 529–541.
    [23] 张雄, 廉艳平, 刘岩, 等. 物质点法 [M]. 北京: 清华大学出版社, 2013.
    [24] 赵晓宁. 高速弹体对混凝土侵彻效应研究 [D]. 南京: 南京理工大学, 2011.

    ZHAO X N. Study on the effect of projectiles high-velocity normal penetrating into concrete targets [D]. Nanjing: Nanjing University of Science & Technology, 2011.
    [25] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strain, high strain rates, and high pressures [C]//14th International Symposium on Ballistics. Quebec, Canada, 1993.
    [26] YAN Q S, DU X L. Forecasting research of overpressure of explosive blast in subway tunnels [J]. Journal of Vibroengineering, 2015, 17(6): 3380–3391.
    [27] 刘川昆, 何川, 王士民, 等. 裂缝长度对盾构隧道管片结构破坏模式模型试验研究 [J]. 中南大学学报(自然科学版), 2019, 50(6): 1447–1456.

    LIU C K, HE C, WANG S M, et al. Model test study on failure mode of segment structure of shield tunnel with crack length [J]. Journal of Central South University (Science and Technology), 2019, 50(6): 1447–1456.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  54
  • PDF下载量:  58
出版历程
  • 收稿日期:  2023-05-03
  • 修回日期:  2023-06-01
  • 录用日期:  2023-06-15
  • 网络出版日期:  2023-10-11
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回