Molecular Dynamics Study on Impact Resistance of Ag-PMMA Composite Films
-
摘要: 纳米尺度多层复合结构的动态冲击响应对半导体制造和微小粒子防护等具有重要意义。采用分子动力学方法模拟Si基底支撑的Ag-PMMA复合薄膜的抗冲击性能,通过对接触力响应、动能损耗、应力波传播、位错和损伤演化、侵彻深度等进行综合分析,解释了在衬底支撑条件下金属聚合物复合薄膜的能量耗散机制。结果表明,侵彻过程可以分为局部压缩阶段和整体变形阶段。在局部压缩阶段,Ag表面接触区域原子在高速冲击下由于应力集中效应直接转化为无定形结构,因而接触力达到侵彻过程的峰值。薄膜厚度主要在整体变形阶段产生影响:较薄的复合薄膜明显受到衬底的限制,在高速冲击下直接发生贯穿性损伤;而较厚的复合薄膜通过Ag的集体位错和PMMA的弹性变形耗散子弹动能,能够充分发挥各层材料特性。Abstract: It is very important for semiconductor manufacturing and small particle protection to study the dynamic impact response of nano-scale multi-layer composite structures. Molecular dynamics simulation was used to investigate the impact resistance of Ag-PMMA composite films supported with Si substrates in this paper. The energy dissipation mechanism of the metal polymer composite film supported on the substrate was explored through contact force response, kinetic energy loss, stress wave propagation, dislocation and damage evolution, and penetration depth. The results show that the impact process includes local compression stage and global deformation stage. During the local compression stage, the atoms in the contact region of Ag surface directly transform into amorphous structures due to the stress concentration effect under high-speed impact, so the contact force reaches the peak of the whole penetration process. The thickness of the film mainly affects the global deformation stage. The thinner composite film is obviously limited by the action of the substrate, and the penetrating damage occurs directly under the high-speed impact. However, the thicker composite film dissipates the kinetic energy of the bullet through a large number of Ag dislocations and PMMA elastic deformation, which can give full play to the material performance of each layer.
-
Key words:
- Ag-PMMA composite films /
- molecular dynamics /
- dynamic impact /
- contact response /
- damage /
- dislocation evolution
-
表 1 非键合相互作用的LJ-12参数
Table 1. LJ-12 parameters of the non-bonded interactions
Material Atom type ε/(kcal·mol−1) σ/Å Diamond C(diamond indenter) 0.105 3.400 Ag Ag 4.560 2.955 PMMA H 0.038 2.450 PMMA C*, C1,2,3 0.039 3.875 PMMA C' 0.148 3.617 PMMA O, O' 0.228 2.860 Si Si 0.401 3.826 -
[1] 向春霆, 范镜泓. 自然复合材料的强韧化机理和仿生复合材料的研究 [J]. 力学进展, 1994, 24(2): 220–232.XIANG C T, FAN J H. On the strengthening and toughening mechanism of natural composites and research of biomimetic composites [J]. Advances in Mechanics, 1994, 24(2): 220–232. [2] RAUT H K, SCHWARTZMAN A F, DAS R, et al. Tough and strong: cross-lamella design imparts multifunctionality to biomimetic nacre [J]. ACS Nano, 2020, 14(8): 9771–9779. doi: 10.1021/acsnano.0c01511 [3] LIN W Q, LIU P, LI S, et al. Multi-scale design of the chela of the hermit crab Coenobita brevimanus [J]. Acta Biomaterialia, 2021, 127: 229–241. doi: 10.1016/j.actbio.2021.04.012 [4] PAN X F, WU B, GAO H L, et al. Double-layer nacre-inspired polyimide-mica nanocomposite films with excellent mechanical stability for LEO environmental conditions [J]. Advanced Materials, 2022, 34(2): 2105299. doi: 10.1002/adma.202105299 [5] BAE G, CHOI G M, AHN C, et al. Flexible protective film: ultrahard, yet flexible hybrid nanocomposite reinforced by 3D inorganic nanoshell structures [J]. Advanced Functional Materials, 2021, 31(18): 2010254. doi: 10.1002/adfm.202010254 [6] SRAMA R, AHRENS T J, ALTOBELLI N, et al. The Cassini cosmic dust analyzer [J]. Space Science Reviews, 2004, 114(1): 465–518. doi: 10.1007/s11214-004-1435-z [7] TARODIYA R, LEVY A. Surface erosion due to particle-surface interactions: a review [J]. Powder Technology, 2021, 387: 527–559. doi: 10.1016/j.powtec.2021.04.055 [8] LI W Y, CAO C C, YIN S. Solid-state cold spraying of Ti and its alloys: a literature review [J]. Progress in Materials Science, 2020, 110: 100633. doi: 10.1016/j.pmatsci.2019.100633 [9] TIAMIYU A A, PANG E L, CHEN X, et al. Nanotwinning-assisted dynamic recrystallization at high strains and strain rates [J]. Nature Materials, 2022, 21(7): 786–794. doi: 10.1038/s41563-022-01250-0 [10] LEE J H, VEYSSET D, SINGER J P, et al. High strain rate deformation of layered nanocomposites [J]. Nature Communications, 2012, 3(1): 1164. doi: 10.1038/ncomms2166 [11] TANG Y Q, LI D Y. Dynamic response of high-entropy alloys to ballistic impact [J]. Science Advances, 2022, 8(32): eabp9096. doi: 10.1126/SCIADV.ABP9096 [12] COAKLEY J, HIGGINBOTHAM A, MCGONEGLE D, et al. Femtosecond quantification of void evolution during rapid material failure [J]. Science Advances, 2020, 6(51): eabb4434. doi: 10.1126/sciadv.abb4434 [13] DEWAPRIYA M A N, MILLER R E. Molecular dynamics study of the mechanical behaviour of ultrathin polymer-metal multilayers under extreme dynamic conditions [J]. Computational Materials Science, 2020, 184: 109951. doi: 10.1016/j.commatsci.2020.109951 [14] CHIANG C C, BRESLIN J, WEEKS S, et al. Dynamic mechanical behaviors of nacre-inspired graphene-polymer nanocompo-sites depending on internal nanostructures [J]. Extreme Mechanics Letters, 2021, 49: 101451. doi: 10.1016/j.eml.2021.101451 [15] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039 [16] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012 [17] DAUBER-OSGUTHORPE P, ROBERTS V A, OSGUTHORPE D J, et al. Structure and energetics of ligand binding to proteins: escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system [J]. Proteins: Structure, Function, and Bioinformatics, 1988, 4(1): 31–47. doi: 10.1002/prot.340040106 [18] WILLIAMS P L, MISHIN Y, HAMILTON J C. An embedded-atom potential for the Cu-Ag system [J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(5): 817–833. doi: 10.1088/0965-0393/14/5/002 [19] KUMAGAI T, IZUMI S, HARA S, et al. Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation [J]. Computational Materials Science, 2007, 39(2): 457–464. doi: 10.1016/j.commatsci.2006.07.013 [20] PENG P, LIAO G L, SHI T L, et al. Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate [J]. Applied Surface Science, 2010, 256(21): 6284–6290. doi: 10.1016/j.apsusc.2010.04.005 [21] 周楠, 王金相, 张亚宁, 等. 球形破片侵彻下钢/铝复合靶板的失效模式与吸能机理 [J]. 爆炸与冲击, 2018, 38(1): 66–75. doi: 10.11883/bzycj-2016-0131ZHOU N, WANG J X, ZHANG Y N, et al. Failure mode and energy absorption mechanism of steel/aluminum composite plates impacted by spherical fragment [J]. Explosion and Shock Waves, 2018, 38(1): 66–75. doi: 10.11883/bzycj-2016-0131 [22] STUKOWSKI A, ALBE K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(8): 085001. doi: 10.1088/0965-0393/18/8/085001 [23] STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007. doi: 10.1088/0965-0393/20/8/085007 [24] FAKEN D, JÓNSSON H. Systematic analysis of local atomic structure combined with 3D computer graphics [J]. Computational Materials Science, 1994, 2(2): 279–286. doi: 10.1016/0927-0256(94)90109-0 [25] HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. The Journal of Physical Chemistry, 1987, 91(19): 4950–4963. doi: 10.1021/j100303a014