Ag-PMMA复合薄膜抗冲击性能的分子动力学研究

林高建 高文鹏 陈鹏万 孙伟福

林高建, 高文鹏, 陈鹏万, 孙伟福. Ag-PMMA复合薄膜抗冲击性能的分子动力学研究[J]. 高压物理学报, 2023, 37(4): 044205. doi: 10.11858/gywlxb.20230655
引用本文: 林高建, 高文鹏, 陈鹏万, 孙伟福. Ag-PMMA复合薄膜抗冲击性能的分子动力学研究[J]. 高压物理学报, 2023, 37(4): 044205. doi: 10.11858/gywlxb.20230655
LIN Gaojian, GAO Wenpeng, CHEN Pengwan, SUN Weifu. Molecular Dynamics Study on Impact Resistance of Ag-PMMA Composite Films[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044205. doi: 10.11858/gywlxb.20230655
Citation: LIN Gaojian, GAO Wenpeng, CHEN Pengwan, SUN Weifu. Molecular Dynamics Study on Impact Resistance of Ag-PMMA Composite Films[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044205. doi: 10.11858/gywlxb.20230655

Ag-PMMA复合薄膜抗冲击性能的分子动力学研究

doi: 10.11858/gywlxb.20230655
基金项目: 国家自然科学基金(12111530281)
详细信息
    作者简介:

    林高建(1992-),男,博士,副研究员,主要从事薄膜结构力学研究. E-mail:lingaojian@bit.edu.cn

    通讯作者:

    孙伟福(1984-),男,博士,教授,主要从事复合材料研究. E-mail:weifu.sun@bit.edu.cn

  • 中图分类号: O385; O521.2

Molecular Dynamics Study on Impact Resistance of Ag-PMMA Composite Films

  • 摘要: 纳米尺度多层复合结构的动态冲击响应对半导体制造和微小粒子防护等具有重要意义。采用分子动力学方法模拟Si基底支撑的Ag-PMMA复合薄膜的抗冲击性能,通过对接触力响应、动能损耗、应力波传播、位错和损伤演化、侵彻深度等进行综合分析,解释了在衬底支撑条件下金属聚合物复合薄膜的能量耗散机制。结果表明,侵彻过程可以分为局部压缩阶段和整体变形阶段。在局部压缩阶段,Ag表面接触区域原子在高速冲击下由于应力集中效应直接转化为无定形结构,因而接触力达到侵彻过程的峰值。薄膜厚度主要在整体变形阶段产生影响:较薄的复合薄膜明显受到衬底的限制,在高速冲击下直接发生贯穿性损伤;而较厚的复合薄膜通过Ag的集体位错和PMMA的弹性变形耗散子弹动能,能够充分发挥各层材料特性。

     

  • 图  PMMA单体的分子结构(化学式为[C5O2H8]n

    Figure  1.  Molecular structure of PMMA monomer (The chemical formula is [C5O2H8]n)

    图  球形金刚石子弹冲击Si衬底支撑的Ag-PMMA复合薄膜的模型示意图

    Figure  2.  Model diagram of spherical diamond bullet impacting Ag-PMMA composite film supported by Si substrate

    图  子弹质心速度的时间历程曲线

    Figure  3.  Time history curves of bullet centroid velocity

    图  子弹与Ag-PMMA复合薄膜的接触力时程曲线

    Figure  4.  Time history curves of contact force between bullet and Ag-PMMA composite film

    图  复合薄膜各层间z方向相互作用力时程曲线

    Figure  5.  Time history curves of interaction force between layers of composite film in the z-direction

    图  2.0 km/s冲击速度下2+2复合薄膜的Mises应力分布

    Figure  6.  Mises stress distribution of 2+2 composite films at an impact velocity of 2.0 km/s

    图  2.0 km/s冲击速度下 8+8复合薄膜的Mises应力分布

    Figure  7.  Mises stress distribution of 8+8 composite films at an impact velocity of 2.0 km/s

    图  2.0 km/s冲击速度下2+2复合薄膜中Ag层底部的原子位移云图

    Figure  8.  Atomic displacement nephogram of the bottom of the Ag layer in 2+2 composite film at an impact velocity of 2.0 km/s

    图  2.0 km/s冲击速度下8+8复合薄膜中Ag层底部的原子位移云图

    Figure  9.  Atomic displacement nephogram of the bottom of the Ag layer in 8+8 composite film at an impact velocity of 2.0 km/s

    图  10  2.0 km/s冲击速度下2+2复合薄膜中Ag内部的原子结构(a)和位错损伤分布(b)

    Figure  10.  Atomic structure (a) and dislocation damage (b) of Ag inside 2+2 composite film at an impact velocity of 2.0 km/s

    图  11  2.0 km/s冲击速度下8+8复合薄膜中Ag内部的原子结构(a)和位错损伤分布(b)

    Figure  11.  Atomic structure (a) and dislocation damage (b) of Ag inside 8+8 composite film at an impact velocity of 2.0 km/s

    图  12  复合薄膜中Ag内部总位错线长度的时程曲线

    Figure  12.  Time history curves of the length of the total dislocation line of Ag layer in the composite film

    图  13  不同冲击速度下2+2复合薄膜中Ag内部的相分数

    Figure  13.  Phase fraction of Ag layer in 2+2 composite film at different impact velocities

    图  14  不同冲击速度下8+8复合薄膜中Ag内部的相分数

    Figure  14.  Phase fraction of Ag layer in 8+8 composite film at different impact velocities

    图  15  不同冲击速度和薄膜厚度条件下复合薄膜的侵彻深度

    Figure  15.  Penetration depths of composite films with different thicknesses at different impact velocities

    表  1  非键合相互作用的LJ-12参数

    Table  1.   LJ-12 parameters of the non-bonded interactions

    MaterialAtom typeε/(kcal·mol−1)σ
    DiamondC(diamond indenter)0.1053.400
    AgAg4.5602.955
    PMMAH0.0382.450
    PMMAC*, C1,2,30.0393.875
    PMMAC'0.1483.617
    PMMAO, O'0.2282.860
    SiSi0.4013.826
    下载: 导出CSV
  • [1] 向春霆, 范镜泓. 自然复合材料的强韧化机理和仿生复合材料的研究 [J]. 力学进展, 1994, 24(2): 220–232.

    XIANG C T, FAN J H. On the strengthening and toughening mechanism of natural composites and research of biomimetic composites [J]. Advances in Mechanics, 1994, 24(2): 220–232.
    [2] RAUT H K, SCHWARTZMAN A F, DAS R, et al. Tough and strong: cross-lamella design imparts multifunctionality to biomimetic nacre [J]. ACS Nano, 2020, 14(8): 9771–9779. doi: 10.1021/acsnano.0c01511
    [3] LIN W Q, LIU P, LI S, et al. Multi-scale design of the chela of the hermit crab Coenobita brevimanus [J]. Acta Biomaterialia, 2021, 127: 229–241. doi: 10.1016/j.actbio.2021.04.012
    [4] PAN X F, WU B, GAO H L, et al. Double-layer nacre-inspired polyimide-mica nanocomposite films with excellent mechanical stability for LEO environmental conditions [J]. Advanced Materials, 2022, 34(2): 2105299. doi: 10.1002/adma.202105299
    [5] BAE G, CHOI G M, AHN C, et al. Flexible protective film: ultrahard, yet flexible hybrid nanocomposite reinforced by 3D inorganic nanoshell structures [J]. Advanced Functional Materials, 2021, 31(18): 2010254. doi: 10.1002/adfm.202010254
    [6] SRAMA R, AHRENS T J, ALTOBELLI N, et al. The Cassini cosmic dust analyzer [J]. Space Science Reviews, 2004, 114(1): 465–518. doi: 10.1007/s11214-004-1435-z
    [7] TARODIYA R, LEVY A. Surface erosion due to particle-surface interactions: a review [J]. Powder Technology, 2021, 387: 527–559. doi: 10.1016/j.powtec.2021.04.055
    [8] LI W Y, CAO C C, YIN S. Solid-state cold spraying of Ti and its alloys: a literature review [J]. Progress in Materials Science, 2020, 110: 100633. doi: 10.1016/j.pmatsci.2019.100633
    [9] TIAMIYU A A, PANG E L, CHEN X, et al. Nanotwinning-assisted dynamic recrystallization at high strains and strain rates [J]. Nature Materials, 2022, 21(7): 786–794. doi: 10.1038/s41563-022-01250-0
    [10] LEE J H, VEYSSET D, SINGER J P, et al. High strain rate deformation of layered nanocomposites [J]. Nature Communications, 2012, 3(1): 1164. doi: 10.1038/ncomms2166
    [11] TANG Y Q, LI D Y. Dynamic response of high-entropy alloys to ballistic impact [J]. Science Advances, 2022, 8(32): eabp9096. doi: 10.1126/SCIADV.ABP9096
    [12] COAKLEY J, HIGGINBOTHAM A, MCGONEGLE D, et al. Femtosecond quantification of void evolution during rapid material failure [J]. Science Advances, 2020, 6(51): eabb4434. doi: 10.1126/sciadv.abb4434
    [13] DEWAPRIYA M A N, MILLER R E. Molecular dynamics study of the mechanical behaviour of ultrathin polymer-metal multilayers under extreme dynamic conditions [J]. Computational Materials Science, 2020, 184: 109951. doi: 10.1016/j.commatsci.2020.109951
    [14] CHIANG C C, BRESLIN J, WEEKS S, et al. Dynamic mechanical behaviors of nacre-inspired graphene-polymer nanocompo-sites depending on internal nanostructures [J]. Extreme Mechanics Letters, 2021, 49: 101451. doi: 10.1016/j.eml.2021.101451
    [15] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
    [16] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [17] DAUBER-OSGUTHORPE P, ROBERTS V A, OSGUTHORPE D J, et al. Structure and energetics of ligand binding to proteins: escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system [J]. Proteins: Structure, Function, and Bioinformatics, 1988, 4(1): 31–47. doi: 10.1002/prot.340040106
    [18] WILLIAMS P L, MISHIN Y, HAMILTON J C. An embedded-atom potential for the Cu-Ag system [J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(5): 817–833. doi: 10.1088/0965-0393/14/5/002
    [19] KUMAGAI T, IZUMI S, HARA S, et al. Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation [J]. Computational Materials Science, 2007, 39(2): 457–464. doi: 10.1016/j.commatsci.2006.07.013
    [20] PENG P, LIAO G L, SHI T L, et al. Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate [J]. Applied Surface Science, 2010, 256(21): 6284–6290. doi: 10.1016/j.apsusc.2010.04.005
    [21] 周楠, 王金相, 张亚宁, 等. 球形破片侵彻下钢/铝复合靶板的失效模式与吸能机理 [J]. 爆炸与冲击, 2018, 38(1): 66–75. doi: 10.11883/bzycj-2016-0131

    ZHOU N, WANG J X, ZHANG Y N, et al. Failure mode and energy absorption mechanism of steel/aluminum composite plates impacted by spherical fragment [J]. Explosion and Shock Waves, 2018, 38(1): 66–75. doi: 10.11883/bzycj-2016-0131
    [22] STUKOWSKI A, ALBE K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(8): 085001. doi: 10.1088/0965-0393/18/8/085001
    [23] STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007. doi: 10.1088/0965-0393/20/8/085007
    [24] FAKEN D, JÓNSSON H. Systematic analysis of local atomic structure combined with 3D computer graphics [J]. Computational Materials Science, 1994, 2(2): 279–286. doi: 10.1016/0927-0256(94)90109-0
    [25] HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. The Journal of Physical Chemistry, 1987, 91(19): 4950–4963. doi: 10.1021/j100303a014
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  105
  • PDF下载量:  22
出版历程
  • 收稿日期:  2023-05-03
  • 修回日期:  2023-05-25
  • 网络出版日期:  2023-08-10
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回