Optimization Design of Gas-Liquid Conveying Pipe Structure for 20 L Spherical Explosion Experimental Device
-
摘要: 以20 L球型爆炸装置中的气液输送管段为研究对象,结合数值模拟方法,分析了气液输送管段中气液两相流的流型结构和截面含气率特性,基于此对气液输送管段的曲率半径和水平管段长度进行优化设计。结果表明:在0.6 MPa压力下,C6H14、C7H16、C8H18和C10H22均可以形成稳定的环状流;随着压力升高,C6H14和C7H16的流型结构有趋于不稳定的趋势。在0.6~0.9 MPa压力下,当气液输送管段曲率半径为34 mm、管段长度在200~300 mm之间时,大部分液相呈膜状沿管壁运动,且液膜分布较均匀;气相在管段中心处高速流过,具有良好的气芯,形成的环状流流型结构更稳定。对气液输送管段的优化设计可使爆炸特性的测量更精确,也可为研究可燃液体燃料爆炸问题及工程设计提供参考。Abstract: The paper takes the gas-liquid conveying pipe section in a 20 L spherical explosive device as the research object. The flow pattern structure and cross-section air voids characteristics of gas-liquid two-phase flow in the gas-liquid conveying pipe were studied by numerical simulation. The curvature radius and horizontal pipe length of the gas-liquid conveying pipe section were optimized and designed based on the simulation. The results show that C6H14, C7H16, C8H18, and C10H22 can form stable annular flow under at pressure of 0.6 MPa. The flow structure of C6H14 and C7H16 tends to become unstable with increasing pressure. Under the pressure conditions of 0.6–0.9 MPa, when the curvature radius of the gas-liquid conveying pipeline section is 34 mm and the length of the pipeline section is 200–300 mm, most of the liquid phase forms a film and moves along the pipeline wall, and the distribution of the liquid film is relatively homogeneous. The gas phase located in the center of the pipe section flows at high speed with a good gas core. It forms a more stable annular flow pattern structure. The optimization design of the gas-liquid conveying pipeline section can make the measurement of explosion characteristics more accurate, and provide a reference for the study of combustible liquid fuel explosion problems and engineering design.
-
表 1 气液两相物理参数
Table 1. Gas-liquid two-phase physical parameters
Material Density/(kg·m−3) Viscosity/(kPa·s) Surface tension/(N·m−1) Air 1.236 1.85 C6H14 669 32 0.020 3 C7H16 683 40.9 0.021 6 C8H18 700 54 0.021 8 C10H22 730 92 0.023 3 表 2 0.6 MPa压力下4种物质气液输送管段截面的含气率
Table 2. Cross section air voids of four substances in gas-liquid conveying pipeline section at 0.6 MPa
Material a1 a2 $ \beta $ C6H14 0.911 2 0.654 0 1.4 C7H16 0.878 0 0.680 5 1.3 C8H18 0.856 0 0.655 7 1.3 C10H22 0.912 2 0.678 0 1.3 表 3 4种物质在不同压力下形成较稳定环状流的管段范围
Table 3. Range of pipe sections with stable annular flow formed by four substances under different pressures
Material Range of pipe section/mm 0.6 MPa 0.7 MPa 0.8 MPa 0.9 MPa C6H14 230–300 C7H16 210–300 C8H18 200–300 210–300 210–300 200–300 C10H22 210–300 200–300 210–300 210–300 -
[1] 王悦. 可燃液体燃料云雾形成和爆炸问题研究 [D]. 北京: 北京理工大学, 2016.WANG Y. Research on generation of mists and explosion characteristics for flammable liquid fuels [D]. Beijing: Beijing University of Technology, 2016. [2] 刘雪岭. 瞬态多相云雾浓度、湍流及其爆炸物理特征实验研究 [D]. 北京: 北京理工大学, 2016.LIU X L. The experimental study of physical and explosion characteristics on transient multiphase mists of concentration, turbulence [D]. Beijing: Beijing Institute of Technology, 2016. [3] 王悦, 白春华, 李斌, 等. 二次脉冲气动喷雾系统的设计与实验研究 [J]. 高压物理学报, 2015, 29(5): 347–355.WANG Y, BAI C H, LI B, et al. Design and experimental research on the double pulse pneumatic spray system [J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 347–355. [4] 凤文桢, 熊新宇, 高凯, 等. 点火延迟时间对镁粉尘云爆炸特性影响研究 [J]. 消防科学与技术, 2021, 40(1): 25-8. doi: 10.3210/fst.40.25FENG W Z, XIONG X Y, GAO K, et al. Influence of ignition delay time on explosion characteristics of magnesium dust cloud [J]. Fire Science and Technology, 2021, 40(1): 25–28. doi: 10.3210/fst.40.25 [5] 黄勇, 赵庆贤, 刘龙飞, 等. 激波诱导油液柱变形、破碎及其雾化过程研究 [J]. 常州大学学报 (自然科学版), 2021, 33(4): 55–62.HUANG Y, ZHAO Q X, LIU L F, et al. Study of deformation, breakup and atomization of diesel fuel column by shock wave [J]. Journal of Changzhou University (Natural Science Edition), 2021, 33(4): 55–62. [6] SPITZER S H, ASKAR E, BENKE A, et al. Influence of pre-ignition pressure rise on safety characteristics of dusts and hybrid mixtures [J]. Fuel, 2022, 311: 122495. doi: 10.1016/j.fuel.2021.122495 [7] 曹兴岩, 任婧杰, 毕明树, 等. 超细水雾雾化方式对甲烷爆炸过程影响的实验研究 [J]. 煤炭学报, 2017, 42(7): 1795–1802.CAO X Y, REN J J, BI M S, et al. Experiment study on effect of methane explosion process by atomization method of ultrafine water mist [J]. Journal of China Coal Society, 2017, 42(7): 1795–1802. [8] 张成均, 白春华. 基于20 L球罐的多相混合物扩散模拟 [J]. 中国安全生产科学技术, 2019, 15(4): 52–58.ZHANG C J, BAI C H. Diffusion simulation of multiphase mixture based on 20 L spherical vessel [J]. Journal of Safety Science and Technology, 2019, 15(4): 52–58. [9] 张江石, 刘建华. 分散度对铝粉爆炸敏感性的影响 [J]. 兵工学报, 2021, 42(5): 979–986.ZHANG J S, LIU J H. Effect of dispersity on explosion sensitivity of aluminum powder [J]. Acta Armamentarii, 2021, 42(5): 979–986. [10] 卢国菊, 于丽雅, 高彩军. 铝粉及铝镁混合粉的爆炸特性 [J]. 粉末冶金工业, 2022, 32(6): 82–85.LU G J, YU L Y, GAO C J. Study on the explosion characteristics of aluminium powder and aluminium magnesium mixed powder [J]. Powder Metallurgy Industry, 2022, 32(6): 82–85. [11] 吕启申, 臧小为, 潘旭海, 等. 温度和浓度对甲醇喷雾爆炸特性参数的影响 [J]. 爆炸与冲击, 2019, 39(9): 095402.LYU Q S, ZANG X W, PAN X H, et al. Effects of temperature and concentration on characteristic parameters of methanol explosion [J]. Explosion and Shock Waves, 2019, 39(9): 095402. [12] 刘可心, 刘炜, 孙亚松. 多因素耦合作用对甲烷爆炸特性的影响 [J]. 爆炸与冲击, 2023, 43(3): 032101.LIU K X, LIU W, SUN Y S. Influence of multi-factor coupling on methane explosion characteristics [J]. Explosion and Shock Waves, 2023, 43(3): 032101. [13] 王悦, 白春华. 乙醚云雾场燃爆参数实验研究 [J]. 爆炸与冲击, 2016, 36(4): 497–502.WANG Y, BAI C H. Experimental research on explosion parameters of diethyl ether mist [J]. Explosion and Shock Waves, 2016, 36(4): 497–502. [14] 李子丰. 基于VOF的气液两相流多尺度耦合算法 [D]. 沈阳: 沈阳化工大学, 2022.LI Z F. Multiscale coupling algorithm for gas-liquid two-phase flow based on VOF [D]. Shenyang: Shenyang University of Chemical Technology, 2022. [15] 高忠信, 邓杰, 葛新峰. 圆形弯管气液两相流数值模拟 [J]. 水利学报, 2009, 40(6): 696–702.GAO Z X, DENG J, GE X F. Simulation of bubbly two-phase turbulent flow in circular pipe bend [J]. Journal of Hydraulic Engineering, 2009, 40(6): 696–702. [16] 牛成林. 基于图像检测技术的气液两相流截面含气率测量实验研究 [J]. 新型工业化, 2017, 7(5): 26–31.NIU C L. Void fraction of vertical gas-liquid two-phase flow based on image detection method [J]. The Journal of New Industrialization, 2017, 7(5): 26–31.