玻璃纤维增强聚碳酸酯复合材料的动态拉伸力学行为特征及其失效机理

管海陆 张晓琼 舒洪基 王志华

管海陆, 张晓琼, 舒洪基, 王志华. 玻璃纤维增强聚碳酸酯复合材料的动态拉伸力学行为特征及其失效机理[J]. 高压物理学报, 2023, 37(4): 044101. doi: 10.11858/gywlxb.20230648
引用本文: 管海陆, 张晓琼, 舒洪基, 王志华. 玻璃纤维增强聚碳酸酯复合材料的动态拉伸力学行为特征及其失效机理[J]. 高压物理学报, 2023, 37(4): 044101. doi: 10.11858/gywlxb.20230648
GUAN Hailu, ZHANG Xiaoqiong, SHU Hongji, WANG Zhihua. Dynamic Tensile Properties and Failure Mechanism of Glass Fiber Reinforced Polycarbonate Composite[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044101. doi: 10.11858/gywlxb.20230648
Citation: GUAN Hailu, ZHANG Xiaoqiong, SHU Hongji, WANG Zhihua. Dynamic Tensile Properties and Failure Mechanism of Glass Fiber Reinforced Polycarbonate Composite[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044101. doi: 10.11858/gywlxb.20230648

玻璃纤维增强聚碳酸酯复合材料的动态拉伸力学行为特征及其失效机理

doi: 10.11858/gywlxb.20230648
基金项目: 山西省科技重大专项(202101120401008);山西省基础研究计划(20210302124691)
详细信息
    作者简介:

    管海陆(1997-),男,硕士研究生,主要从事复合材料动态力学行为研究.E-mail:guanhailu2015@163.com

    通讯作者:

    张晓琼(1987-),女,博士,讲师,主要从事复合材料动态力学行为和失效机理研究.E-mail:zhangxiaoqiong@tyut.edu.cn

  • 中图分类号: O341; TB332

Dynamic Tensile Properties and Failure Mechanism of Glass Fiber Reinforced Polycarbonate Composite

  • 摘要: 为了探明由不同方向玻璃纤维增强的聚碳酸酯(polycarbonate,PC)复合材料在宽应变率范围内的拉伸力学行为特征及其失效机理,使用材料实验机、中应变率实验机和分离式Hopkinson杆实验装置,对玻璃纤维质量分数为20%、纤维方向不同(0°、45°及90°)的PC复合材料开展了0.001~1000 s−1应变率范围内的拉伸实验研究,并通过扫描电镜对加载后的3种试件断口进行了微观分析。实验结果显示,当加载应变率由0.001 s−1增加至1000 s−1时,玻璃纤维方向为0°、45°和90°的3种试件的拉伸强度分别增加57.5%、58.2%和49.4%,破坏应变分别增加74.1%、125.1%和129.1%,说明玻璃纤维增强PC复合材料具有显著的应变率效应。玻璃纤维方向为0°的试件的拉伸强度高于其他两种试件,而其破坏应变低于其他两种试件。在应变率为0.001 s−1的准静态加载下,玻璃纤维增强PC复合材料呈现出纤维拔出、纤维断裂、基体脆性断裂以及纤维与基体脱粘4种失效模式;在1000 s−1的高应变率加载下,玻璃纤维增强PC复合材料呈现出纤维拔出、纤维断裂、基体塑性变形、基体塑性断裂以及纤维与基体脱粘5种失效模式。高应变率加载下,玻璃纤维增强PC复合材料的破坏强度和破坏应变相较于准静态加载下大幅增加的主要原因是:绝热温升效应导致玻璃纤维增强PC复合材料内的PC基体软化,PC复合材料产生塑性变形,基体/纤维界面黏附力增强。

     

  • 图  拉伸试件的加工及试件尺寸(单位:mm)

    Figure  1.  Specimen machining and dimension of specimen (Unit: mm)

    图  准静态拉伸实验设备和中应变率拉伸实验设备

    Figure  2.  Quasi-static tensile test machine and medium strain rate tensile test equipment

    图  分离式Hopkinson杆装置示意图

    Figure  3.  Schematic diagram of split Hopkinson bar device

    图  玻璃纤维增强PC复合材料动态拉伸应力波形

    Figure  4.  Dynamic tension wave of glass fiber reinforced PC composite

    图  玻璃纤维方向不同的玻璃纤维增强PC复合材料在不同应变率下的工程应力-工程应变曲线

    Figure  5.  Engineering stress-engineering strain curves of glass fiber reinforced PC composites with different glass fiber orientations at different strain rates

    图  玻璃纤维增强PC复合材料在不同应变率下拉伸强度与破坏应变

    Figure  6.  Tensile strength and failure strain of glass fiber reinforced PC composites at different strain rates

    图  应变率分别为0.001、1和1000 s−1时玻璃纤维增强PC复合材料拉伸断口的微观形貌

    Figure  7.  Tensile fracture microstructure of glass fiber reinforced PC composites at strain rates of 0.001, 1 and 1000 s−1, respectively

    表  1  材料性能参数

    Table  1.   Property parameters of materials

    MaterialsYoung’s modulus/GPaPoisson’s ratioFiber diameter/μmDensity/(g∙cm−3)
    Glass fiber700.2515-202.45
    Pure PC2.020.381.21
    20% glass fiber reinforced PC composite4.0-6.20.331.30
    下载: 导出CSV
  • [1] CHANG S H, HWANG J R, DOONG J L. Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using grey relational analysis [J]. Journal of Materials Processing Technology, 2000, 97(1/2/3): 186–193.
    [2] AHMED A, RAHMAN Z, OU Y F, et al. A review on the tensile behavior of fiber-reinforced polymer composites under varying strain rates and temperatures [J]. Construction and Building Materials, 2021, 294: 123565. doi: 10.1016/j.conbuildmat.2021.123565
    [3] HAZER S, AYTAC A. Effect of glass fiber reinforcement on the thermal, mechanical, and flame retardancy behavior of poly(lactic acid)/polycarbonate blend [J]. Polymer Composites, 2020, 41(4): 1481–1489. doi: 10.1002/pc.25471
    [4] GRAZIANO A, DIAS O A T, PETEL O. High-strain-rate mechanical performance of particle- and fiber-reinforced polymer composites measured with split Hopkinson bar: a review [J]. Polymer Composites, 2021, 42(10): 4932–4948. doi: 10.1002/pc.26200
    [5] 尹洪峰, 薛飞彪, 魏英, 等. 连续玻璃纤维和玻璃微珠共增强尼龙6复合材料的抗冲击性能 [J]. 复合材料学报, 2023, 40(2): 761–770. doi: 10.13801/j.cnki.fhclxb.20220330.001

    YIN H F, XUE F B, WEI Y, et al. Impact resistance of continuous glass fiber and glass bead co-reinforced nylon 6 composites [J]. Acta Materiae Compositae Sinica, 2023, 40(2): 761–770. doi: 10.13801/j.cnki.fhclxb.20220330.001
    [6] HOUSHYAR S, SHANKS R A, HODZIC A. The effect of fiber concentration on mechanical and thermal properties of fiber-reinforced polypropylene composites [J]. Journal of Applied Polymer Science, 2005, 96(6): 2260–2272. doi: 10.1002/app.20874
    [7] JAWALI N D, SIDDARAMAIAH, SIDDESHWARAPPA B, et al. Polycarbonate/short glass fiber reinforced composites-physico-mechanical, morphological and FEM analysis [J]. Journal of Reinforced Plastics and Composites, 2008, 27(3): 313–319. doi: 10.1177/0731684407083951
    [8] 李益俊, 辛勇. 玻纤含量对玻纤增强聚碳酸酯微结构成型及力学性能的影响 [J]. 高分子材料科学与工程, 2019, 35(5): 27–31. doi: 10.16865/j.cnki.1000-7555.2019.0126

    LI Y J, XIN Y. Effect of glass fiber content on microstructure and mechanical properties of glass fiber reinforced polycarbonate [J]. Polymer Materials Science & Engineering, 2019, 35(5): 27–31. doi: 10.16865/j.cnki.1000-7555.2019.0126
    [9] FU S Y, LAUKE B, MÄDER E, et al. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites [J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(10): 1117–1125. doi: 10.1016/S1359-835X(00)00068-3
    [10] MORTAZAVIAN S, FATEMI A. Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites [J]. Composites Part B: Engineering, 2015, 72: 116–129. doi: 10.1016/j.compositesb.2014.11.041
    [11] SATO N, KURAUCHI T, SATO S, et al. Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation [J]. Journal of Materials Science, 1991, 26(14): 3891–3898. doi: 10.1007/BF01184987
    [12] SONG J H, LIM J K. Fatigue crack growth behavior and fiber orientation of glass fiber reinforced polycarbonate polymer composites [J]. Metals and Materials International, 2007, 13(5): 371–377. doi: 10.1007/BF03027870
    [13] CAO K, WANG Y, WANG Y. Effects of strain rate and temperature on the tension behavior of polycarbonate [J]. Materials & Design, 2012, 38: 53–58.
    [14] CAO K, MA X Z, ZHANG B S, et al. Tensile behavior of polycarbonate over a wide range of strain rates [J]. Materials Science and Engineering: A, 2010, 527(16/17): 4056–4061.
    [15] MORTAZAVIAN S, FATEMI A. Tensile behavior and modeling of short fiber-reinforced polymer composites including temperature and strain rate effects [J]. Journal of Thermoplastic Composite Materials, 2017, 30(10): 1414–1437. doi: 10.1177/0892705716632863
    [16] MELIN L G, ASP L E. Effects of strain rate on transverse tension properties of a carbon/epoxy composite: studied by moiré photography [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(3): 305–316. doi: 10.1016/S1359-835X(98)00123-7
    [17] SHIRINBAYAN M, FITOUSSI J, KHERADMAND F, et al. Coupling effect of strain rate and temperature on tensile damage mechanism of polyphenylene sulfide reinforced by glass fiber (PPS/GF30) [J]. Journal of Thermoplastic Composite Materials, 2022, 35(11): 1994–2008. doi: 10.1177/0892705720944229
    [18] WANG Z, ZHOU Y X, MALLICK P K. Effects of temperature and strain rate on the tensile behavior of short fiber reinforced polyamide-6 [J]. Polymer Composites, 2002, 23(5): 858–871. doi: 10.1002/pc.10484
    [19] ZHANG M H, JIANG B Y, CHEN C, et al. The effect of temperature and strain rate on the interfacial behavior of glass fiber reinforced polypropylene composites: a molecular dynamics study [J]. Polymers, 2019, 11(11): 1766. doi: 10.3390/polym11111766
    [20] LEE W S, XIEA G L, LIN C F. The strain rate and temperature dependence of the dynamic impact response of tungsten composite [J]. Materials Science and Engineering: A, 1998, 257(2): 256–267. doi: 10.1016/S0921-5093(98)00852-1
    [21] WU C C, WANG S H, CHEN C Y, et al. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel [J]. Scripta Materialia, 2007, 56(8): 717–720. doi: 10.1016/j.scriptamat.2006.08.064
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  57
  • PDF下载量:  40
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-05-16
  • 录用日期:  2023-05-17
  • 网络出版日期:  2023-08-21
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回