高压下新型MAX相M2SeC(M=Zr, Hf)的密度泛函理论研究

何鑫 田辉 王健 陈万蕾 魏兆旋 刘金程 齐东丽 沈龙海

何鑫, 田辉, 王健, 陈万蕾, 魏兆旋, 刘金程, 齐东丽, 沈龙海. 高压下新型MAX相M2SeC(M=Zr, Hf)的密度泛函理论研究[J]. 高压物理学报, 2023, 37(4): 041102. doi: 10.11858/gywlxb.20230644
引用本文: 何鑫, 田辉, 王健, 陈万蕾, 魏兆旋, 刘金程, 齐东丽, 沈龙海. 高压下新型MAX相M2SeC(M=Zr, Hf)的密度泛函理论研究[J]. 高压物理学报, 2023, 37(4): 041102. doi: 10.11858/gywlxb.20230644
HE Xin, TIAN Hui, WANG Jian, CHEN Wanlei, WEI Zhaoxuan, LIU Jincheng, QI Dongli, SHEN Longhai. Density Generalized Function Theory Study on New MAX Phase M2SeC (M=Zr, Hf) under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 041102. doi: 10.11858/gywlxb.20230644
Citation: HE Xin, TIAN Hui, WANG Jian, CHEN Wanlei, WEI Zhaoxuan, LIU Jincheng, QI Dongli, SHEN Longhai. Density Generalized Function Theory Study on New MAX Phase M2SeC (M=Zr, Hf) under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 041102. doi: 10.11858/gywlxb.20230644

高压下新型MAX相M2SeC(M=Zr, Hf)的密度泛函理论研究

doi: 10.11858/gywlxb.20230644
基金项目: 国家自然科学基金(12274304);沈阳理工大学2022年引进高层次人才科研支持经费(1010147001132,1010147001137)
详细信息
    作者简介:

    何 鑫(1999-),男,硕士研究生,主要从事MAX材料的高压研究. E-mail:1447712537@qq.com

    通讯作者:

    田 辉(1989-),男,博士,讲师,主要从事MAX材料的高压研究. E-mail:tianhui18@mails.jlu.edu.cn

    沈龙海(1977-),男,博士,教授,主要从事纳米材料制备与物性研究. E-mail:shenlonghai@sylu.edu.cn

  • 中图分类号: O521.2; O469

Density Generalized Function Theory Study on New MAX Phase M2SeC (M=Zr, Hf) under High Pressure

  • 摘要: 基于密度泛函理论的第一性原理,研究了压力对新型MAX相Zr2SeC和Hf2SeC晶体结构、弹性、电子和热力学性质的影响。弹性常数和声子计算表明,两种化合物在0~40 GPa压力范围内具有稳定结构。与大多数MAX相不同,Zr2SeC和Hf2SeC沿a轴方向比沿c轴方向更容易被压缩,外部压力对Zr2SeC晶体结构的影响比Hf2SeC更显著。电子结构计算表明,Zr2SeC和Hf2SeC具有金属性质,压力的升高降低了Zr2SeC和Hf2SeC在费米能级处的电子态密度,因此提高了Zr2SeC和Hf2SeC的稳定性。此外,弹性模量、泊松比和各向异性指数等均随着压力的升高而增大。在0~40 GPa压力范围内,相同压力下Hf2SeC的弹性模量大于Zr2SeC,表明高压下Hf2Se具有比Zr2SeC更强的抗断裂和抗变形能力。热力学性质计算表明,Zr2SeC和Hf2SeC在0~40 GPa压力范围内具有较高的熔化温度。

     

  • 图  M2SeC的晶体结构

    Figure  1.  Crystal structures of M2SeC

    图  M2SeC的相对晶格参数和相对体积随压力的变化

    Figure  2.  Pressure dependence of relative lattice parameters and relative unit cell volume for M2SeC

    图  M2SeC中M—Se和M—C的相对键长变化

    Figure  3.  Variations of relative bond lengths between M—Se and M—C atoms of M2SeC

    图  不同压力下M2SeC的声子色散曲线

    Figure  4.  Phonon dispersion curves for M2SeC at different pressures

    图  M2SeC(M=Zr, Hf)的弹性常数随压力的变化

    Figure  5.  Elastic constants for M2SeC (M=Zr, Hf) in the dependence of pressure

    图  M2SeC(M=Zr, Hf)的弹性模量随压力的变化

    Figure  6.  Variations of elastic modulus of M2SeC (M=Zr, Hf) with pressure

    图  M2SeC(M = Zr,Hf)的泊松比和各向异性指数(A)随压力的变化

    Figure  7.  Variations of Poisson’s ratio and anisotropic index (A) for the M2SeC (M = Zr, Hf) in the dependence of pressure

    图  不同压力下Zr2SeC和Hf2SeC的三维杨氏模量

    Figure  8.  3D plot of Young’s modulus (E) surface of Zr2SeC and Hf2SeC at various pressures

    图  费米能级设置为0 eV时M2SeC在0、20和40 GPa下的能带结构

    Figure  9.  Band structure for M2SeC at pressure 0, 20, and 40 GPa for Fermi level set to 0 eV

    图  10  费米能级设置为0 eV时M2SeC在0、20和40 GPa下的总态密度和部分态密度

    Figure  10.  Total and partial density of states for M2SeC at pressure 0, 20 and 40 GPa for Fermi level set to 0 eV

    表  1  Zr2SeC和Hf2SeC的结构参数

    Table  1.   Structural parameters of Zr2SeC and Hf2SeC

    MaterialMethoda0c0c0/a0z
    Zr2SeCThis work
    Exp.[39]
    Calc.[39]
    3.476
    3.462
    3.487
    12.633
    12.518
    12.631
    3.634
    3.615
    3.622
    0.095 7

    0.096 5
    Hf2SeCThis work
    Exp.[40]
    Calc.[40]
    3.435
    3.422
    3.436
    12.479
    12.391
    12.452
    3.621
    3.621
    3.624
    0.094 6

    0.094 5
    下载: 导出CSV

    表  2  M2SeC的弹性常数和弹性模量随压力的变化

    Table  2.   Elastic constant and elastic moduli change of M2SeC with pressure

    M2AXPressure/GPaC11/GPaC12/GPaC13/GPaC33/GPaC44/GPaB/GPaG/GPaE/GPa
    Zr2SeC 0
    4
    8
    12
    16
    20
    24
    28
    32
    36
    40
    272
    290
    305
    320
    337
    354
    366
    378
    393
    404
    417
    84
    91
    99
    106
    113
    121
    128
    135
    144
    152
    161
    94
    106
    118
    130
    144
    157
    165
    176
    187
    197
    207
    293
    313
    331
    349
    368
    386
    397
    416
    430
    446
    462
    128
    140
    153
    165
    178
    191
    200
    212
    222
    232
    243
    153
    166
    179
    191
    204
    217
    227
    238
    249
    259
    270
    106
    113
    120
    126
    132
    139
    143
    148
    153
    157
    162
    259
    277
    294
    309
    326
    343
    354
    368
    381
    392
    404
    Hf2SeC 0
    4
    8
    12
    16
    20
    24
    28
    32
    36
    40
    288
    307
    325
    341
    358
    374
    391
    406
    422
    437
    451
    85
    93
    100
    107
    115
    123
    132
    141
    150
    159
    167
    101
    114
    127
    140
    150
    161
    171
    181
    192
    202
    212
    307
    327
    347
    366
    383
    401
    418
    435
    454
    470
    487
    129
    144
    159
    172
    185
    198
    211
    223
    234
    246
    257
    161
    176
    189
    202
    214
    226
    238
    250
    262
    274
    285
    111
    119
    126
    133
    140
    147
    153
    159
    165
    170
    176
    271
    291
    310
    328
    345
    362
    378
    393
    409
    423
    437
    下载: 导出CSV

    表  3  0~40 GPa压力下M2SeC的横向声速、纵向声速、平均声速和德拜温度

    Table  3.   Transverse, longitudinal, mean sound velocities, and Debye’s temperaturefor the M2SeC phase at 0–40 GPa pressure

    M2AXPressure/GPavt/(km·s−1)vl/(km·s−1)vm/(km·s−1)$\varTheta_{\rm{D}} $/KTm/KRef.
    Zr2SeC 0
    4
    8
    12
    16
    20
    24
    28
    32
    36
    40
    3.935
    4.013
    4.079
    4.132
    4.200
    4.263
    4.289
    4.335
    4.372
    4.402
    4.437
    6.555
    6.714
    6.859
    6.979
    7.125
    7.260
    7.331
    7.432
    7.527
    7.604
    7.692
    4.353
    4.441
    4.517
    4.578
    4.654
    4.726
    4.756
    4.809
    4.852
    4.886
    4.926
    508.8
    523.4
    536.3
    547.2
    560.0
    571.9
    578.8
    588.3
    596.4
    603.4
    611.1
    1 609
    1 693
    1 767
    1 837
    1 916
    1 995
    2 046
    2 113
    2 178
    2 237
    2 299
    Hf2SeC 0
    4
    8
    12
    16
    20
    24
    28
    32
    36
    40
    3.083
    3.156
    3.218
    3.273
    3.325
    3.374
    3.419
    3.458
    3.498
    3.531
    3.564
    5.149
    5.289
    5.412
    5.523
    5.624
    5.719
    5.811
    5.893
    5.979
    6.056
    6.127
    3.412
    3.493
    3.563
    3.625
    3.683
    3.738
    3.790
    3.833
    3.879
    3.917
    3.954
    403.6
    416.5
    427.8
    438.2
    447.9
    457.1
    465.9
    473.5
    481.4
    488.3
    495.0
    1 678
    1 767
    1 848
    1 927
    2 003
    2 078
    2 154
    2 224
    2 301
    2 371
    2 438
    Zr2AlC 04.22 6.89 4.66 544 [51]
    Hf2AlC 03.38 5.50 3.73 439 [52]
    下载: 导出CSV
  • [1] BARSOUM M W. The M N+1AXN phases: a new class of solids: thermodynamically stable nanolaminates [J]. Progress in Solid State Chemistry, 2000, 28(1): 201–281.
    [2] WANG X H, ZHOU Y C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review [J]. Journal of Materials Science and Technology, 2010, 26(5): 385–416.
    [3] EKLUND P, BECKERS M, JANSSON U, et al. The M n+1AXn phases: materials science and thin-film processing [J]. Thin Solid Films, 2010, 518: 1851–1878. doi: 10.1016/j.tsf.2009.07.184
    [4] BARSOUM M W, EL-RAGHY T. The MAX phases: unique new carbide and nitride materials [J]. American Scientist, 2001, 89: 334–343. doi: 10.1511/2001.28.736
    [5] BARSOUM M W, EL-RAGHY T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2 [J]. Journal of the American Ceramic Society, 1996, 79: 1953–1956. doi: 10.1111/j.1151-2916.1996.tb08018.x
    [6] TZENOV N V, BARSOUM M W. Synthesis and characterization of Ti3AlC2 [J]. Journal of the American Ceramic Society, 2000, 83(4): 825–832.
    [7] HAJAS D E, TO BABEN M, HALLSTEDT B, et al. Oxidation of Cr2AlC coatings in the temperature range of 1 230 to 1 410 °C [J]. Surface and Coatings Technology, 2011, 206(4): 591–598. doi: 10.1016/j.surfcoat.2011.03.086
    [8] SMIALEK J L. Oxidation of Al2O3 scale-forming MAX phases in turbine environments [J]. Metallurgical and Materials Transactions A, 2018, 49: 782–792. doi: 10.1007/s11661-017-4346-9
    [9] FU J, ZHANG T F, XIA Q X, et al. Oxidation and corrosion behavior of nanolaminated MAX-phase Ti2AlC film synthesized by high-power impulse magnetron sputtering and annealing [J]. Journal of Nanomaterials, 2015, 16: 411.
    [10] GUPTA S, FILIMONOV D A, PALANISAMY T G, et al. Tribological behavior of select MAX phases against Al2O3 at elevated temperatures [J]. Wear, 2008, 265: 560–565. doi: 10.1016/j.wear.2007.11.018
    [11] HOPFELD M, GRIESELER R, VOGEL A, et al. Tribological behavior of selected M n+1AXn phase thin films on silicon substrates [J]. Surface and Coatings Technology, 2014, 257: 286–294.
    [12] SHEIN I R, IVANOVSKII A L. Elastic properties of superconducting MAX phases from first-principles calculations [J]. Physica Status Solidi B. Basic Research, 2010, 248(1): 228–232.
    [13] LEE W E, GIORGI E, HARRISON R, et al. Nuclear applications for ultra-high temperature ceramics and MAX phases [M]//FAHRENHOLTZ W G, WUCHINA E J, LEE W E. Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications. The American Ceramic Society, 2014.
    [14] SUN D D, HU Q K, CHEN J F, et al. Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: a first-principles investigation [J]. ACS Applied Materials and Interfaces, 2015, 8(1): 74–81.
    [15] LIN Z, BARBARA D, TABEMA P-L, et al. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte [J]. Journal of Power Sources, 2016, 326: 575–579. doi: 10.1016/j.jpowsour.2016.04.035
    [16] WANG Y H, MA C, MA W Q, et al. Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination [J]. 2D Materials, 2019, 6(4): 045025. doi: 10.1088/2053-1583/ab30f9
    [17] LAPAUW T, TUNCA B, CABIOCH T, et al. Synthesis of MAX phases in the Hf-Al-C system [J]. Inorganic Chemistry, 2016, 55(21): 10922–10927.
    [18] PIECHOWIAK M A, HENON J, DURAND-PANTEIX O, et al. Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method [J]. Journal of the European Ceramic Society, 2014, 34(5): 1063–1072. doi: 10.1016/j.jeurceramsoc.2013.11.019
    [19] MOCKUTE A, PERSSON P O Å, MAGNUS F, et al. Synthesis and characterization of arc deposited magnetic (Cr, Mn)2AlC MAX phase films [J]. Physica Status Solidi, 2014, 8(5): 420–423.
    [20] HOFFMAN E N, VINSON D W, SINDELAR R L, et al. MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis [J]. Nuclear Engineering and Design, 2012, 244: 17–24. doi: 10.1016/j.nucengdes.2011.12.009
    [21] ROMEO M, ESCAMILLA R. Pressure effect on the structural, elastic and electronic properties of Nb2AC (A=S and In) phases; ab initio study [J]. Computational Materials Science, 2014, 81: 184–190. doi: 10.1016/j.commatsci.2013.08.010
    [22] ROMEO M, ESCAMILLA R. First-principles calculations of structural, elastic and electronic properties of Nb2SnC under pressure [J]. Computational Materials Science, 2012, 55: 142–146. doi: 10.1016/j.commatsci.2011.11.038
    [23] BOUHEMADOU A, KHENATA R, KHAROUBI M, et al. First-principles study of structural and elastic properties of Sc2AC (A=Al, Ga, In, Tl) [J]. Solid State Communications, 2008, 146(3): 175–180.
    [24] BOUHEMADOU A. Calculated structural and elastic properties of M2InC (M=Sc, Ti, V, Zr, Nb, Hf, Ta) [J]. Modern Physics Letters B, 2008, 22(22): 2063–2076. doi: 10.1142/S0217984908016807
    [25] BOUHEMADOU A. Structural, electronic and elastic properties of MAX phases M2GaN (M = Ti, V and Cr) [J]. Solid State Sciences, 2009, 11: 1875–1881. doi: 10.1016/j.solidstatesciences.2009.08.002
    [26] PENG M J, WANG R F, WU Y J, et al. Elastic anisotropies, thermal conductivities and tensile properties of MAX phases Zr2AlC and Zr2AlN: a first-principles calculation [J]. Vacuum, 2022, 196: 110715. doi: 10.1016/j.vacuum.2021.110715
    [27] UDDIN M, ALI M A, HOSSAIN M M, et al. Comparative study of predicted MAX phase Hf2AlN with recently synthesized Hf2AlC: a first principle calculations [J]. Indian Journal of Physics, 2022, 96(5): 1321–1333. doi: 10.1007/s12648-021-02050-z
    [28] MIAO N X, WANG J J, GONG Y T, et al. Computational prediction of boron-based MAX phases and MXene derivatives [J]. Chemistry of Materials, 2020, 32(16): 6947–6957.
    [29] LUO F, GUO Z C, ZHANG X L, et al. Ab initio predictions of structural and thermodynamic properties of Zr2AlC under high pressure and high temperature [J]. Chinese Journal of Chemical Physics, 2015, 28(3): 263–268. doi: 10.1063/1674-0068/28/cjcp1503032
    [30] FU H Z, TENG M, LIU W F, et al. The axial compressibility, thermal expansion and elastic anisotropy of Hf2SC under pressure [J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2010, 78(1): 37–42. doi: 10.1140/epjb/e2010-10332-5
    [31] QURESHI M W, MA X X, TANG G Z, et al. Structural stability, electronic, mechanical, phonon, and thermodynamic properties of the M2GaC (M=Zr, Hf) MAX phase: an ab initio calculation [J]. Materials, 2020, 13(22): 1–18.
    [32] ALI M A, QURESHI M W. Newly synthesized MAX phase Zr2SeC: DFT insights into physical properties towards possible applications [J]. RSC Advances, 2021, 11: 16892–16905. doi: 10.1039/D1RA02345D
    [33] ALI M A, QURESHI M W. DFT insights into the new Hf-based chalcogenide MAX phase Hf2SeC [J]. Vacuum, 2022, 201: 111072. doi: 10.1016/j.vacuum.2022.111072
    [34] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [35] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115–13118. doi: 10.1103/PhysRevB.48.13115
    [36] BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [37] WU Z G, COHEN R E. More accurate generalized gradient approximation for solids [J]. Physical Review B, 2006, 73(23): 235116. doi: 10.1103/PhysRevB.73.235116
    [38] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [39] CHEN K, BAI X J, MU X L, et al. MAX phase Zr2SeC and its thermal conduction behavior [J]. Journal of the European Ceramic Society, 2021, 41(8): 4447–4451. doi: 10.1016/j.jeurceramsoc.2021.03.013
    [40] WANG X D, CHEN K, WU E X, et al. Synthesis and thermal expansion of chalcogenide MAX phase Hf2SeC [J]. Journal of the European Ceramic Society, 2022, 42(5): 2084–2088. doi: 10.1016/j.jeurceramsoc.2021.12.062
    [41] KANG D B. Influence of different a elements on bonding and elastic properties of Zr2AC (A=Al, Si, P, S): a theoretical investigation [J]. Bulletin of the Korean Chemical Society, 2013, 34(2): 609–614. doi: 10.5012/bkcs.2013.34.2.609
    [42] YANG Z J, GUO Y, LINGHU R F, et al. First-principles calculation of the lattice compressibility, elastic anisotropy and thermodynamic stability of V2GeC [J]. Chinese Physics B, 2012, 21: 036301. doi: 10.1088/1674-1056/21/3/036301
    [43] WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115
    [44] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
    [45] OUADHA I, RACHED H, AZZOUZ-RACHED A, et al. Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1 xTix)3AlC2 [J]. Computational Condensed Matter, 2020, 23: e00468. doi: 10.1016/j.cocom.2020.e00468
    [46] AYDIN S, SIMSEK M. First-principles calculations of elemental crystalline boron phases under high pressure: orthorhombic B28 and tetragonal B48 [J]. Journal of Alloys and Compounds, 2011, 509(17): 5219–5229. doi: 10.1016/j.jallcom.2011.02.070
    [47] FRANTSEVICH I N. Elastic constants and elastic moduli of metals and insulators [J]. Reference Book, 1982.
    [48] CHEN Q, HUANG Z W, ZHAO Z D, et al. Thermal stabilities, elastic properties and electronic structures of B2-MgRE (RE=Sc, Y, La) by first-principles calculations [J]. Computational Materials Science, 2013, 67: 196–202. doi: 10.1016/j.commatsci.2012.08.010
    [49] XU Y, HU C Y, ZHOU S G, et al. Theoretical insights on structural, mechanical and thermodynamic properties of MCoB (M=Nb, Mo, and W) ternary borides under high pressure [J]. Solid State Sciences, 2022, 130: 106931. doi: 10.1016/j.solidstatesciences.2022.106931
    [50] ANDERSON O L. A simplified method for calculating the debye temperature from elastic constants [J]. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909–917. doi: 10.1016/0022-3697(63)90067-2
    [51] BOUHEMADOU A, KHENATA R, CHEGAAR M. Structural and elastic properties of Zr2AlX and Ti2AlX (X = C and N) under pressure effect [J]. The European Physical Journal B, 2007, 56: 209–215. doi: 10.1140/epjb/e2007-00115-6
    [52] BOUHEMADOU A. Structural and elastic properties under pressure effect of Hf2AlN and Hf2AlC [J]. High Pressure Research, 2008, 28: 45–53. doi: 10.1080/08957950701882872
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  57
  • PDF下载量:  52
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2023-05-11
  • 录用日期:  2023-06-07
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回