道砟冲击下高速列车设备舱底板的动态响应

鲁渴伟 敬霖

鲁渴伟, 敬霖. 道砟冲击下高速列车设备舱底板的动态响应[J]. 高压物理学报, 2023, 37(4): 044203. doi: 10.11858/gywlxb.20230642
引用本文: 鲁渴伟, 敬霖. 道砟冲击下高速列车设备舱底板的动态响应[J]. 高压物理学报, 2023, 37(4): 044203. doi: 10.11858/gywlxb.20230642
LU Kewei, JING Lin. Dynamic Response of Equipment Cabin Bottom Plate of High-Speed Train Subjected to Ballast Impact[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044203. doi: 10.11858/gywlxb.20230642
Citation: LU Kewei, JING Lin. Dynamic Response of Equipment Cabin Bottom Plate of High-Speed Train Subjected to Ballast Impact[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044203. doi: 10.11858/gywlxb.20230642

道砟冲击下高速列车设备舱底板的动态响应

doi: 10.11858/gywlxb.20230642
基金项目: 国家自然科学基金(12122211)
详细信息
    作者简介:

    鲁渴伟(1997-),男,硕士研究生,主要从事高速铁路道砟飞溅行为研究.E-mail:lke208545@163.com

    通讯作者:

    敬 霖(1984-),男,博士,研究员,主要从事冲击动力学、轨道交通冲击安全与防护研究.E-mail:jinglin@swjtu.edu.cn

  • 中图分类号: O347.1; U270.2

Dynamic Response of Equipment Cabin Bottom Plate of High-Speed Train Subjected to Ballast Impact

  • 摘要: 考虑道砟真实的不规则几何形态特征与材料的应变率效应及失效行为,建立了道砟冲击高速列车设备舱底板的有限元模型,分析了设备舱前面板横向和纵向中心线节点的挠度时程响应,探究了设备舱底板与道砟间接触力的演化规律,讨论了冲击速度、冲击角度和道砟形状对设备舱底板冲击响应和破坏行为的影响,分析了不同工况下设备舱底板的失效模式和破坏形貌特征,量化了设备舱前面板的最大瞬态变形位移和凹坑深度与冲击速度的变化关系。结果表明,同一冲击工况下,设备舱底板最大瞬态变形位移和凹坑深度均分别随着冲击速度的提高和冲击角度的增大而增大;设备舱前面板最大变形区域的形状和范围大小以及前面板损伤失效区域的面积和分布特征与道砟几何形状密切相关,且椭球体道砟作用下列车设备舱底板的损伤失效最严重;不同冲击条件下设备舱前面板表现出不同程度的延性损伤,较大的道砟质量和冲击速度工况下还出现拉伸撕裂破坏甚至轻微冲塞现象。

     

  • 图  道砟冲击列车设备舱底板的有限元模型:(a) 道砟颗粒有限元模型;(b) 设备舱底板的几何模型;(c) 设备舱底板的有限元模型(单位:mm)

    Figure  1.  Finite element model of ballast impact at equipment cabin bottom plate: (a) finite element model of ballast particles; (b) geometric model of equipment cabin bottom plate; (c) finite element model of equipment cabin bottom plate (Unit: mm)

    图  t=1.95 ms时刻下设备舱前面板各向位移分布

    Figure  2.  Distributions of the displacement of front face sheet of equipment cabin at t=1.95 ms

    图  道砟和设备舱底板的接触力时程响应曲线

    Figure  3.  Contact force history response curves of ballast and equipment cabin bottom plate

    图  不同撞击时刻设备舱前面板横向和纵向中心线节点挠度分布

    Figure  4.  Distribution of nodal deflections in the transverse and longitudinal centerlines of equipment cabin front face sheet at different impact moments

    图  不同质量的圆球体道砟撞击设备舱底板时的变形响应时程曲线

    Figure  5.  Deformation response history curves of equipment cabin bottom plate impacted by spherical ballast with different masses

    图  设备舱底板冲击点最大位移和凹坑深度与冲击速度的关系

    Figure  6.  Relationship between maximum displacement at impact point as well as pit depth of equipment cabin bottom plate and impact velocity

    图  不同冲击速度下设备舱前面板的破坏形貌(单位:mm)

    Figure  7.  Damage morphologies of front face sheet at different impact velocities (Unit: mm)

    图  道砟斜碰设备舱底板的y-z平面示意图

    Figure  8.  Schematic diagram of ballast oblique impact equipment cabin bottom plate in the y-z plane

    图  设备舱底板冲击点最大位移及凹坑深度与冲击角度的关系

    Figure  9.  Relationship between maximum displacement at impact point as well as pit depth of equipment cabin bottom plate and impact angle

    图  10  不同冲击角度下设备舱前面板挠度的横向和纵向分布

    Figure  10.  Transverse and longitudinal distributions of deflection of front face sheet of equipment cabin under different impact angles

    图  11  不同冲击角度下设备舱前面板破坏形貌(单位:mm)

    Figure  11.  Damage morphologies of front face sheet of equipment cabin under different impact angles (Unit: mm)

    图  12  不同形状道砟冲击下设备舱底板的变形响应时程曲线及其冲击点最大位移和凹坑深度

    Figure  12.  Deformation response history curves of equipment cabin bottom plate as well as its maximum displacement at impact point and pit depth under different ballast shapes

    图  13  不同形状的道砟冲击时设备舱前面板破坏形貌(单位:mm)

    Figure  13.  Damage morphologies of front face sheet of equipment cabin impacted by ballast with different shapes (Unit: mm)

    表  1  花岗岩型道砟的HJC本构参数[17]

    Table  1.   Parameters of HJC modeling for granite ballast material[17]

    ρ/(kg·m−3)fc/MPaAHBHCHSmaxG/GPaT/MPaDH1DH2
    26001540.282.50.00186528.712.20.041
    pcrush/MPaμcrushplock/GPaμlockK1/GPaK2/GPaK3/GPaεf,minNεf
    510.001621.20.0121225420.010.790.035
    下载: 导出CSV

    表  2  6061-T6铝合金的Johnson-Cook本构模型和失效模型参数[19]

    Table  2.   Johnson-Cook constitutive model parameters and failure model parameters of 6061-T6 aluminum alloy[19]

    ρ/(kg·m−3)E/GPaμ${\dot \varepsilon {_0}}$/s−1AJ/MPaBJ/MPa
    2700700.330.001275.96288.39
    CJ/MPanD1D2D3D4
    0.00640.590.362−4.57×10−617.4340.0112
    下载: 导出CSV

    表  3  不同道砟质量下冲击点最大位移及凹坑深度与冲击速度间的拟合参数

    Table  3.   Fitted correlation parameters between maximum displacement at the impact point as well as pit depth and impact velocity for different ballast masses

    Ballast mass kv1/(m2·h–1)bv1/mm$ R_{v1}^2 $kv2/(m2·h–1)bv2/mm$ R_{v2}^2 $
    S500.04106−2.707810.99910.04376−5.841930.9968
    S1000.05496−2.800240.99940.05472−4.894420.9998
    S1500.07130−4.975760.99800.07313−7.660260.9950
    S2000.08851−7.183400.99950.08794−9.190380.9978
    下载: 导出CSV
  • [1] FAROOQ M A, NIMBALKAR S, FATAHI B. Three-dimensional finite element analyses of tyre derived aggregates in ballasted and ballastless tracks [J]. Computers and Geotechnics, 2021, 136: 104220. doi: 10.1016/j.compgeo.2021.104220
    [2] QUINN A D, HAYWARD M, BAKER C J, et al. A full-scale experimental and modelling study of ballast flight under high-speed trains [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224(2): 61–74. doi: 10.1243/09544097JRRT294
    [3] DING D, OUAHSINE A, XIAO W X, et al. Numerical study of ballast-flight caused by dropping snow/ice blocks in high-speed railways using discontinuous deformation analysis (DDA) [J]. Transportation Geotechnics, 2020, 22: 100314. doi: 10.1016/j.trgeo.2019.100314
    [4] YU Z H, LIU K, ZHOU X F, et al. Low-velocity impact response of aluminum alloy corrugated sandwich beams used for high-speed trains [J]. Thin-Walled Structures, 2023, 183: 110375. doi: 10.1016/j.tws.2022.110375
    [5] LAZARO B J, GONZALEZ E, RODRIGUEZ M, et al. Characterization and modeling of flying ballast phenomena in high-speed train lines [C]//9th World Congress Railway Research. Lille, France, 2011.
    [6] SAUSSINE G. Ballast flying and projection phenomena: issues and challenges [C]//WILLIAM W. Hay Railroad Engineering Seminar. Paris, France, 2013.
    [7] 姜成, 姚曙光, 曹武雄, 等. 砾石冲击下动车组裙板的变形影响因素分析 [J]. 铁道学报, 2018, 40(2): 23–30. doi: 10.3969/j.issn.1001-8360.2018.02.004

    JIANG C, YAO S G, CAO W X, et al. Study of deformation factors for electric multiple unit skirt boards under impact of ballast [J]. Journal of the China Railway Society, 2018, 40(2): 23–30. doi: 10.3969/j.issn.1001-8360.2018.02.004
    [8] SAKLY A, LAKSIMI A, KEBIR H, et al. Experimental and modelling study of low velocity impacts on composite sandwich structures for railway applications [J]. Engineering Failure Analysis, 2016, 68: 22–31. doi: 10.1016/j.engfailanal.2016.03.001
    [9] 刘杰夫, 雷紫平, 朱玉雯, 等. 高速列车设备舱底板夹芯结构异物冲击压痕行为及抗性强化 [J]. 中南大学学报(自然科学版), 2022, 53(5): 1976–1988.

    LIU J F, LEI Z P, ZHU Y W, et al. Impact indentation behavior and resistance enhancement of high-speed train equipment cabin bottom plate with honeycomb sandwich structure [J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1976–1988.
    [10] 敬霖, 韩亮亮, 周彭滔. 基于SPH方法铁路车轴遭受道砟撞击的数值模拟 [J]. 爆炸与冲击, 2018, 38(3): 603–615.

    JING L, HAN L L, ZHOU P T. A numerical simulation of railway axles subjected to ballast impact based on SPH method [J]. Explosion and Shock Waves, 2018, 38(3): 603–615.
    [11] JING G Q, DING D, LIU X. High-speed railway ballast flight mechanism analysis and risk management: a literature review [J]. Construction and Building Materials, 2019, 223: 629–642. doi: 10.1016/j.conbuildmat.2019.06.194
    [12] 中国铁道研究院. 铁路碎石道砟: TB/T 2140—2008 [S]. 北京: 中国铁道出版社, 2008.
    [13] YIN H, GAO L. Experimental and numerical investigation on ballast flight from perspective of individual particles [J]. Applied Sciences, 2019, 10(1): 286. doi: 10.3390/app10010286
    [14] KWON H B, PARK C S. An experimental study on the relationship between ballast-flying phenomenon and strong wind under high-speed train [C]//7th World Congress on Rail Research. Montreal, QC, Canada, 2006.
    [15] HUANG H, TUTUMLUER E. Image-aided element shape generation method in discrete-element modeling for railroad ballast [J]. Journal of Materials in Civil Engineering, 2014, 26(3): 527–535. doi: 10.1061/(ASCE)MT.1943-5533.0000839
    [16] 丁东, 李杰, 王辰永, 等. 高速铁路飞砟问题影响因素与研究进展 [J]. 铁道科学与工程学报, 2022, 19(11): 3117–3126. doi: 10.19713/j.cnki.43-1423/u.t20211476

    DING D, LI J, WANG C Y, et al. Influence factors and research progress of ballast flight in high-speed railways [J]. Journal of Railway Science and Engineering, 2022, 19(11): 3117–3126. doi: 10.19713/j.cnki.43-1423/u.t20211476
    [17] 毕程程. 华山花岗岩HJC本构参数标定及爆破损伤数值模拟 [D]. 合肥: 合肥工业大学, 2018.

    BI C C. Calibration of HJC constitutive parameters of Huashan granite and its blasting damage numerical simulation [D]. Hefei: Hefei University of Technology, 2018.
    [18] BAYKASOGLU C, SUNBULOGLU E, BOZDAG S E, et al. Crash and structural analyses of an aluminium railroad passenger car [J]. International Journal of Crashworthiness, 2012, 17(5): 519–528. doi: 10.1080/13588265.2012.690591
    [19] 周伦, 苏兴亚, 敬霖, 等. 6061-T6铝合金动态拉伸本构关系及失效行为 [J]. 爆炸与冲击, 2022, 42(9): 091407.

    ZHOU L, SU X Y, JING L, et al. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy [J]. Explosion and Shock Waves, 2022, 42(9): 091407.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  49
  • PDF下载量:  29
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-04-27
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回