短碳纤维增强仿生材料设计及其力学性能

杨正青 栾云博 张巨旗 闻贞 王维 李明臻 李永存

杨正青, 栾云博, 张巨旗, 闻贞, 王维, 李明臻, 李永存. 短碳纤维增强仿生材料设计及其力学性能[J]. 高压物理学报, 2023, 37(4): 044102. doi: 10.11858/gywlxb.20230639
引用本文: 杨正青, 栾云博, 张巨旗, 闻贞, 王维, 李明臻, 李永存. 短碳纤维增强仿生材料设计及其力学性能[J]. 高压物理学报, 2023, 37(4): 044102. doi: 10.11858/gywlxb.20230639
YANG Zhengqing, LUAN Yunbo, ZHANG Juqi, WEN Zhen, WANG Wei, LI Mingzhen, LI Yongcun. Design and Mechanical Properties of Short Carbon Fiber Reinforced Biomimetic Materials[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044102. doi: 10.11858/gywlxb.20230639
Citation: YANG Zhengqing, LUAN Yunbo, ZHANG Juqi, WEN Zhen, WANG Wei, LI Mingzhen, LI Yongcun. Design and Mechanical Properties of Short Carbon Fiber Reinforced Biomimetic Materials[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044102. doi: 10.11858/gywlxb.20230639

短碳纤维增强仿生材料设计及其力学性能

doi: 10.11858/gywlxb.20230639
基金项目: 国家自然科学基金(12041201);山西省基础研究计划项目(202203021211126,202203021211122)
详细信息
    作者简介:

    杨正青(1998-),女,硕士研究生,主要从事复合材料研究. E-mail:1011554619@qq.com

    通讯作者:

    李永存(1982-),男,博士,副教授,主要从事复合材料研究. E-mail:liyongcun@tyut.edu.cn

  • 中图分类号: O347.3

Design and Mechanical Properties of Short Carbon Fiber Reinforced Biomimetic Materials

  • 摘要: 在自然进化中,众多生物材料因其内部多级结构的精巧配合表现出卓越的力学性能。碳纤维作为一种性能优异的人工材料,为仿生材料设计与制备提供了重要的原材料支撑。以短碳纤维和聚氨酯为原料,发展了一种针管挤制和蒸发固化方法,制备出具有特定纤维取向的短碳纤维增强聚氨酯复合材料薄膜,利用叠层固化成型方法,制备出具有不同层间夹角的仿螳螂虾螺旋叠层结构材料。在此基础上,通过拉伸性能测试及拉伸过程中材料内部微观形貌表征,对该仿生材料的力学增强机理进行研究。结果表明:短碳纤维在薄膜材料中具有良好的取向一致性,当纤维取向角为45°时,单层薄膜的拉伸强度最高;在螺旋叠层结构中,当层间夹角为30°时,仿生材料的拉伸强度最高,这主要是由材料内部纤维端部引起的损伤破坏以及界面脱粘引起的失效破坏所调控。研究结果对于设计和制备高性能短纤维增强复合材料、实现其性能优化具有指导意义。

     

  • 图  样品制备过程

    Figure  1.  Preparation process of the sample

    图  实验制备工具及样品:(a) 机械搅拌装置,(b) 恒温加热装置和针管,(c) 30°薄膜样品,(d)~(h) 分别为0°、30°、45°、60°和90°层间螺旋角的叠层样品

    Figure  2.  Experimental preparation tools and samples: (a) mechanical stirring device; (b) constant temperature heating device and needle tube; (c) 30° thin film specimen; (d)−(h) laminated samples with interlayer helix angles of 0°, 30°, 45°, 60°, and 90°, respectively

    图  叠层结构设计

    Figure  3.  Design of the laminate structures

    图  万能拉伸试验机与样品的显微镜表征

    Figure  4.  Universal tensile testing machine and microscope characterization of specimen

    图  不同纤维取向角薄膜样品的应力-应变曲线及拉伸强度

    Figure  5.  Stress-strain curves and tensile strength of thin film samples with different fiber orientation angles

    图  具有不同纤维取向角的薄膜样品的全场应力分布以及Mises最大应力随纤维取向角的变化曲线

    Figure  6.  Full-field stress distribution of the thin film samples with different fiber orientation angles and the curve of the maximum Mises stress with fiber orientation angle

    图  具有不同纤维取向的薄膜在拉伸前后的微观形貌

    Figure  7.  Microscopic morphology of films with different fiber orientations before and after stretching

    图  具有不同层间夹角叠层结构样品的应力-应变曲线及拉伸强度

    Figure  8.  Stress-strain curves and tensile strengths of laminated structure samples with different interlayer angles

    表  1  模拟中短碳纤维增强复合材料中各材料的属性

    Table  1.   Material properties of short carbon fibers reinforced composite in the simulation

    E1/GPaE2/GPaE3/GPaG12/GPaG13/GPaG23/GPaE/MPaνfνTPU
    2304040242414.31000.260.35
    下载: 导出CSV
  • [1] CHAND S. Review carbon fibers for composites [J]. Journal of Materials Science, 2000, 35(6): 1303–1313. doi: 10.1023/A:1004780301489
    [2] IVORRA S, GARCÉS P, CATALÁ G, et al. Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete [J]. Materials & Design, 2010, 31(3): 1553–1558. doi: 10.1016/j.matdes.2009.09.050
    [3] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277(5334): 1971–1975. doi: 10.1126/science.277.5334.1971
    [4] CANEL T, BAĞLAN İ, SINMAZÇELIK T. Mathematical modeling of heat distribution on carbon fiber Poly (ether-ether-ketone) (PEEK) composite during laser ablation [J]. Optics & Laser Technology, 2020, 127: 106190. doi: 10.1016/j.optlastec.2020.106190
    [5] FERNÁNDEZ A, SANTANGELO-MURO M, FERNÁNDEZ-BLÁZQUEZ J P, et al. Processing and properties of long recycled-carbon-fibre reinforced polypropylene [J]. Composites Part B: Engineering, 2021, 211: 108653. doi: 10.1016/j.compositesb.2021.108653
    [6] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48(3): 788–796. doi: 10.1016/j.carbon.2009.10.028
    [7] 陈雯娜. 短切碳纤维增强热塑性复合材料性能影响因素 [J]. 纺织科学研究, 2021(5): 58–63.

    CHEN W N. Factors affecting the performance of short cut carbon fiber reinforced thermoplastic composites [J]. Textile Science Research, 2021(5): 58–63.
    [8] POKKALLA D K, KUMAR V, JO E, et al. Characterization of anisotropic mechanical properties of polymer composites from a hybrid additive manufacturing-compression molding process using X-ray computer tomography [C]//Proceedings of SPIE 12047, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation ⅩⅥ. Long Beach, United States: SPIE, 2022: 120470V.
    [9] SHENG N, ZHU R J, DONG K X, et al. Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability [J]. Journal of Materials Chemistry A, 2019, 7(9): 4934–4940. doi: 10.1039/c8ta11329g
    [10] 崔福斋, 冯庆玲. 生物材料学[M]. 2版. 北京: 清华大学出版社, 2004.

    CUI F Z, FENG Q L. Biomaterials science [M]. 2nd ed. Beijing: Tsinghua University Press, 2004.
    [11] WEGST U G K, ASHBY M F. The mechanical efficiency of natural materials [J]. Philosophical Magazine, 2004, 84(21): 2167–2186. doi: 10.1080/14786430410001680935
    [12] ZHANG B J, YANG J D, LI Y J, et al. Bioinspired basalt fiber composites with higher impact resistance through coupling sinusoidal and helical structures inspired by mantis shrimp [J]. International Journal of Mechanical Sciences, 2023, 244: 108073. doi: 10.1016/j.ijmecsci.2022.108073
    [13] ZHONG Y, JIANG Z H, SHANGGUAN W W, et al. Design value of the compressive strength for bamboo fiber-reinforced composite based on a reliability analysis [J]. BioResources, 2014, 9(4): 7737–7748. doi: 10.15376/biores.9.4.7737-7748
    [14] RHO J Y, KUHN-SPEARING L, ZIOUPOS P. Mechanical properties and the hierarchical structure of bone [J]. Medical Engineering & Physics, 1998, 20(2): 92–102. doi: 10.1016/S1350-4533(98)00007-1
    [15] YANG W, SHERMAN V R, GLUDOVATZ B, et al. Protective role of Arapaima gigas fish scales: structure and mechanical behavior [J]. Acta Biomaterialia, 2014, 10(8): 3599–3614. doi: 10.1016/j.actbio.2014.04.009
    [16] ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour [J]. Nature Communications, 2013, 4: 2634. doi: 10.1038/ncomms3634
    [17] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336(6086): 1275–1280. doi: 10.1126/science.1218764
    [18] MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials: critical mechanics-materials connections [J]. Science, 2013, 339(6121): 773–779. doi: 10.1126/science.1220854
    [19] GUARÍN-ZAPATA N, GOMEZ J, YARAGHI N, et al. Shear wave filtering in naturally-occurring Bouligand structures [J]. Acta Biomaterialia, 2015, 23: 11–20. doi: 10.1016/j.actbio.2015.04.039
    [20] GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites [J]. Acta Biomaterialia, 2014, 10(9): 3997–4008. doi: 10.1016/j.actbio.2014.03.022
    [21] LIU J W, ZHU J H, ZHANG C L, et al. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity [J]. Journal of the American Chemical Society, 2010, 132(26): 8945–8952. doi: 10.1021/ja910871s
    [22] YAO J, YAN H, LIEBER C M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires [J]. Nature Nanotechnology, 2013, 8(5): 329–335. doi: 10.1038/nnano.2013.55
    [23] XU F, DURHAM J W, WILEY B J, et al. Strain-release assembly of nanowires on stretchable substrates [J]. ACS Nano, 2011, 5(2): 1556–1563. doi: 10.1021/nn103183d
    [24] PEVZNER A, ENGEL Y, ELNATHAN R, et al. Knocking down highly-ordered large-scale nanowire arrays [J]. Nano Letters, 2010, 10(4): 1202–1208. doi: 10.1021/nl903560u
    [25] NING F D, CONG W L, QIU J J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling [J]. Composites Part B: Engineering, 2015, 80: 369–378. doi: 10.1016/j.compositesb.2015.06.013
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  62
  • PDF下载量:  37
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-05-05
  • 网络出版日期:  2023-07-22
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回