Simulation Analysis of Mesoscale Characteristics in the Dynamic Fracture Damage of Heterogeneous Rock
-
摘要: 为从矿物晶质尺度研究非均质岩石动态断裂损伤的细观发展过程,采用颗粒流程序-等效晶质模型构建能够反映微观结构特征的非均质岩石模型,同时利用有限差分法FLAC2D和离散元法PFC2D建立耦合分离式霍普金森压杆系统,对不同冲击载荷下非均质岩石的动态冲击破坏过程进行模拟分析。通过自编Fish语言,对动态破坏过程中矿物的晶内及晶间微裂纹进行细化分组及数量统计,从细观发展的角度剖析非均质岩石的动态断裂损伤演化过程。结果表明:在静态单轴压缩条件下,沿晶破坏是主导非均质岩石破坏的重要原因,晶间裂纹和穿晶裂纹逐步贯通,最终使试样展现出宏观的破坏模式;在动态冲击条件下,各矿物晶内及晶间的微裂纹增长过程均存在萌生期、快速增长期、缓慢增长期和停止增长期4个阶段;与静态单轴压缩条件下微裂纹数的增长模式相似,动态破坏初期晶间裂纹数明显高于晶内裂纹数,岩石主要发生沿晶损伤破坏,随着加载的进行和岩石破坏程度的提升,动态破坏的晶内裂纹数逐渐超过晶间裂纹数。此外,模拟中不同冲击载荷下峰值应变率与对应的峰值载荷以及动态峰值强度与对应的峰值载荷均表现出良好的线性关系,为快速确定岩石相关动态力学参数提供了简便的方法。Abstract: In order to investigate the mesoscale development in the dynamic fracture damage of heterogeneous rocks at the mineral crystal scale, a heterogeneous rock model that can reflect the microstructure characteristics was constructed based on the particle flow code-grain based model (PFC-GBM) method. By establishing the split Hopkinson pressure bar (SHPB) system using finite difference method FLAC2D and discrete element method PFC2D, the dynamic impact failure process of heterogeneous rock under different impact loading was simulated and studied. Through the self-compiled Fish language, the number of intragranular and intergranular microcracks in different minerals during the dynamic failure process was grouped and counted. The microscopic evolution process of dynamic fracture damage of heterogeneous rocks was deeply analyzed from a mesoscopic perspective. The research results show that intergranular failure is an important reason for the failure of the dominant heterogeneous rock under the static uniaxial compression condition. Under impact loading condition, the growth process of microcracks within and between crystals of each mineral had four stages: initiation, rapid growth, slow growth and stop growth. Similar to the growth pattern of the number of microcracks under static uniaxial compression condition, the number of intergranular cracks at the initial stage of dynamic failure was significantly higher than the number of intragranular cracks in each mineral. The rock mainly suffered intergranular damage. As the degree increases, the number of intragranular cracks in dynamic failure gradually exceeds the number of intergranular cracks. In addition, the peak strain rate and the corresponding maximum pressure as well as the dynamic peak strength and the corresponding maximum pressure under different impact loads in the simulation show good linear relationships, which provides a simple method to quickly determine the relevant dynamic mechanical parameters of the rock.
-
Key words:
- rock /
- heterogeneity /
- dynamic damage /
- microcracks /
- mesoscopic features
-
表 1 试样的细观参数
Table 1. Microscopic parameters of the specimen
Material f Ф/(°) K1 Ef/GPa K2 Sn/MPa Ss/MPa Quartz 0.20 30 2.3 53 2.3 34.0 42.0 Feldspar 0.15 33 2.5 43 2.5 27.2 33.6 Mica 0.18 36 3.8 34 3.8 20.4 25.2 Grain boundary 0.50 42 5.0 22 5.0 5.1 6.3 表 2 试样的主要力学参数
Table 2. Main mechanical parameters of the rock specimen
Method E/GPa μ σ/MPa Simulation 30.95 0.205 125.72 Experiment 30.58 0.210 126.57 Error/% 1.2 2.4 0.7 表 4 不同冲击载荷下试样破坏的模拟结果
Table 4. Simulation results of specimen failure under different impact loading
T/μs pm/MPa Crack distribution Fragmentation distribution Nd σd/MPa ${\dot \varepsilon _{\rm d}}$/s−1 200 200 1017 120.56 60.28 250 2386 143.94 76.65 300 3241 162.85 104.59 350 3950 184.84 114.55 400 4776 203.12 157.64 -
[1] 张杰, 郭奇峰, 蔡美峰, 等. 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟 [J]. 工程科学学报, 2021, 43(5): 636–646. doi: 10.13374/j.issn2095-9389.2020.03.15.003ZHANG J, GUO Q F, CAI M F, et al. Particle flow simulation of the crack propagation characteristics of granite under cyclic load [J]. Chinese Journal of Engineering, 2021, 43(5): 636–646. doi: 10.13374/j.issn2095-9389.2020.03.15.003 [2] 李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014: 258−287.LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014: 258−287. [3] 李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405. doi: 10.13722/j.cnki.jrme.2017.0539LI X F, LI H B, LIU K, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. doi: 10.13722/j.cnki.jrme.2017.0539 [4] ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. doi: 10.1016/S1003-6326(17)60021-9 [5] 赵翰卿, 任会兰. 陶瓷巴西圆盘动态劈裂的离散元模拟 [J]. 兵器装备工程学报, 2021, 42(3): 119–124. doi: 10.11809/bqzbgcxb2021.03.023ZHAO H Q, REN H L. Discrete element simulation of dynamic splitting of ceramic Brazilian disc [J]. Journal of Ordnance Equipment Engineering, 2021, 42(3): 119–124. doi: 10.11809/bqzbgcxb2021.03.023 [6] POTYONDY D O. The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions [J]. Geosystem Engineering, 2015, 18(1): 1–28. doi: 10.1080/12269328.2014.998346 [7] INGA C E C, WALTON G, HOLLEY E. Statistical assessment of the effects of grain-structure representation and micro-properties on the behavior of bonded block models for brittle rock damage prediction [J]. Sustainability, 2021, 13(14): 7889. doi: 10.3390/su13147889 [8] WANG Z H, YANG S L, LI L H, et al. A 3D Voronoi clump based model for simulating failure behavior of brittle rock [J]. Engineering Fracture Mechanics, 2021, 248: 107720. doi: 10.1016/j.engfracmech.2021.107720 [9] 李博, 梁秦源, 周宇, 等. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2022, 41(6): 1114–1125. doi: 10.13722/j.cnki.jrme.2021.0837LI B, LIANG Q Y, ZHOU Y, et al. Research on crack propagation law of granite based on CT-GBM reconstruction method [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1114–1125. doi: 10.13722/j.cnki.jrme.2021.0837 [10] ZHANG X P, JI P Q, PENG J, et al. A grain-based model considering pre-existing cracks for modelling mechanical properties of crystalline rock [J]. Computers and Geotechnics, 2020, 127: 103776. doi: 10.1016/j.compgeo.2020.103776 [11] 胡训健, 卞康, 谢正勇, 等. 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟 [J]. 岩土工程学报, 2020, 42(8): 1540–1548. doi: 10.11779/CJGE202008020HU X J, BIAN K, XIE Z Y, et al. Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1540–1548. doi: 10.11779/CJGE202008020 [12] LI H, YANG J, HAN Y, et al. Weibull grain-based model (W-GBM) for simulating heterogeneous mechanical characteristics of salt rock [J]. Engineering Analysis with Boundary Elements, 2019, 108: 227–243. doi: 10.1016/j.enganabound.2019.09.001 [13] SAADAT M, TAHERI A. Modelling micro-cracking behaviour of granite during direct tensile test using cohesive GBM approach [J]. Engineering Fracture Mechanics, 2020, 239: 107297. doi: 10.1016/j.engfracmech.2020.107297 [14] SAADAT M, TAHERI A. Modelling micro-cracking behaviour of pre-cracked granite using grain-based distinct element model [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4669–4692. doi: 10.1007/s00603-019-01862-0 [15] SAADAT M, TAHERI A, KAWAMURA Y. Investigating asperity damage of natural rock joints in polycrystalline rocks under confining pressure using grain-based model [J]. Computers and Geotechnics, 2021, 135: 104144. doi: 10.1016/j.compgeo.2021.104144 [16] LIU G, CAI M, HUANG M. Mechanical properties of brittle rock governed by micro-geometric heterogeneity [J]. Computers and Geotechnics, 2018, 104: 358–372. doi: 10.1016/j.compgeo.2017.11.013 [17] 张涛, 蔚立元, 苏海健, 等. 基于FDM-DEM耦合的冲击损伤大理岩静态断裂力学特征研究 [J]. 爆炸与冲击, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089ZHANG T, YU L Y, SU H J, et al. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation [J]. Explosion and Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089 [18] 赵奎, 伍文凯, 曾鹏, 等. 不同细观组分花岗岩力学特性的颗粒流模拟 [J]. 矿业研究与开发, 2020, 40(1): 32–36. doi: 10.13827/j.cnki.kyyk.2020.01.007ZHAO K, WU W K, ZENG P, et al. Particle flow code simulation on mechanical properties of various meso-compositions granites [J]. Mining Research and Development, 2020, 40(1): 32–36. doi: 10.13827/j.cnki.kyyk.2020.01.007 [19] 刘帅奇, 马凤山, 郭捷, 等. 基于Multi Pb-GBM方法的花岗岩细观力学行为数值研究 [J]. 岩石力学与工程学报, 2020, 39(11): 2283–2295. doi: 10.13722/j.cnki.jrme.2020.0374LIU S Q, MA F S, GUO J, et al. Numerical study on mesoscopic mechanical behaviors of granite based on Multi Pb-GBM method [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2283–2295. doi: 10.13722/j.cnki.jrme.2020.0374 [20] CASTRO-FILGUEIRA U, ALEJANO L R, ARZÚA J, et al. Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks [J]. Procedia Engineering, 2017, 191: 488–495. doi: 10.1016/j.proeng.2017.05.208 [21] 陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究 [J]. 地下空间与工程学报, 2018, 14(5): 1240–1249.CHEN P Y, KONG Y, YU H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240–1249. [22] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用 [M]. 北京: 中国建筑工业出版社, 2018.SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC5.0) [M]. Beijing: China Architecture and Building Press, 2018. [23] WONG L N Y, PENG J. Numerical investigation of micro-cracking behavior of brittle rock containing a pore-like flaw under uniaxial compression [J]. International Journal of Damage Mechanics, 2020, 29(10): 1543–1568. doi: 10.1177/1056789520914700 [24] 王桂林, 王润秋, 孙帆. 块体离散元颗粒模型细观参数标定方法及花岗岩细观演化模拟 [J]. 长江科学院院报, 2022, 39(1): 86–93. doi: 10.11988/ckyyb.20200917WANG G L, WANG R Q, SUN F. A discrete element GBM simulation method for meso-parameter calibration and granite meso-evolution simulation [J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 86–93. doi: 10.11988/ckyyb.20200917 [25] 周喻, 高永涛, 吴顺川, 等. 等效晶质模型及岩石力学特征细观研究 [J]. 岩石力学与工程学报, 2015, 34(3): 511–519. doi: 10.13722/j.cnki.jrme.2015.03.008ZHOU Y, GAO Y T, WU S C, et al. An equivalent crystal model for mesoscopic behaviour of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 511–519. doi: 10.13722/j.cnki.jrme.2015.03.008 [26] 方新宇, 许金余, 刘石, 等. 岩石SHPB试验中子弹形状对加载波形的数值模拟 [J]. 地下空间与工程学报, 2013, 9(5): 1000–1005.FANG X Y, XU J Y, LIU S, et al. Numerical simulation on the influence of projectile shape on loading waveform in SHPB tests of rocks [J]. Chinese Journal of Underground Space and Engineering, 2013, 9(5): 1000–1005. [27] 杨友山, 陈小伟. 脉冲整形器对SHPB波形的影响 [J]. 西南科技大学学报, 2013, 28(1): 36–42. doi: 10.3969/j.issn.1671-8755.2013.01.008YANG Y S, CHEN X W. The effect of impulse shaper on the SHPB waves [J]. Journal of Southwest University of Science and Technology, 2013, 28(1): 36–42. doi: 10.3969/j.issn.1671-8755.2013.01.008 [28] 杨阳, 王建国, 方士正, 等. 霍普金森撞击杆对入射波形影响的数值模拟 [J]. 工程爆破, 2020, 26(1): 7–14, 35. doi: 10.3969/j.issn.1006-7051.2020.01.002YANG Y, WANG J G, FANG S Z, et al. Numerical simulation on the influence of incident wave shape by Hopkinson striker bar [J]. Engineering Blasting, 2020, 26(1): 7–14, 35. doi: 10.3969/j.issn.1006-7051.2020.01.002 [29] 平琦, 马芹永, 袁璞. 岩石SHPB实验加载过程中应力平衡问题分析 [J]. 爆炸与冲击, 2013, 33(6): 655–661. doi: 10.11883/1001-1455(2013)06-0655-07PING Q, MA Q Y, YUAN P. Stress equilibrium in rock specimen during the loading process of SHPB experiment [J]. Explosion and Shock Waves, 2013, 33(6): 655–661. doi: 10.11883/1001-1455(2013)06-0655-07 [30] 张涛, 蔚立元, 鞠明和, 等. 基于PFC3D-GBM的晶体-单元体尺寸比对花岗岩动态拉伸特性影响分析 [J]. 岩石力学与工程学报, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303ZHANG T, YU L Y, JU M H, et al. Study on the effect of grain size-particle size ratio on the dynamic tensile properties of granite based on PFC3D-GBM [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303