非均质岩石动态断裂损伤细观特征模拟分析

崔年生 危剑林 袁增森 徐振洋 刘鑫 王雪松

崔年生, 危剑林, 袁增森, 徐振洋, 刘鑫, 王雪松. 非均质岩石动态断裂损伤细观特征模拟分析[J]. 高压物理学报, 2023, 37(4): 044204. doi: 10.11858/gywlxb.20230638
引用本文: 崔年生, 危剑林, 袁增森, 徐振洋, 刘鑫, 王雪松. 非均质岩石动态断裂损伤细观特征模拟分析[J]. 高压物理学报, 2023, 37(4): 044204. doi: 10.11858/gywlxb.20230638
CUI Niansheng, WEI Jianlin, YUAN Zengsen, XU Zhenyang, LIU Xin, WANG Xuesong. Simulation Analysis of Mesoscale Characteristics in the Dynamic Fracture Damage of Heterogeneous Rock[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044204. doi: 10.11858/gywlxb.20230638
Citation: CUI Niansheng, WEI Jianlin, YUAN Zengsen, XU Zhenyang, LIU Xin, WANG Xuesong. Simulation Analysis of Mesoscale Characteristics in the Dynamic Fracture Damage of Heterogeneous Rock[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044204. doi: 10.11858/gywlxb.20230638

非均质岩石动态断裂损伤细观特征模拟分析

doi: 10.11858/gywlxb.20230638
基金项目: 国家自然科学基金(51974187);辽宁省教育厅项目(LJKZ0282)
详细信息
    作者简介:

    崔年生(1969-),男,本科,高级工程师,主要从事矿山与爆破工程研究.E-mail:cuiniansheng0236@sina.com

    通讯作者:

    危剑林(1981-),男,本科,工程师,主要从事采矿与爆破工程技术研究. E-mail:191079238@qq.com

  • 中图分类号: O347.3; TU45

Simulation Analysis of Mesoscale Characteristics in the Dynamic Fracture Damage of Heterogeneous Rock

  • 摘要: 为从矿物晶质尺度研究非均质岩石动态断裂损伤的细观发展过程,采用颗粒流程序-等效晶质模型构建能够反映微观结构特征的非均质岩石模型,同时利用有限差分法FLAC2D和离散元法PFC2D建立耦合分离式霍普金森压杆系统,对不同冲击载荷下非均质岩石的动态冲击破坏过程进行模拟分析。通过自编Fish语言,对动态破坏过程中矿物的晶内及晶间微裂纹进行细化分组及数量统计,从细观发展的角度剖析非均质岩石的动态断裂损伤演化过程。结果表明:在静态单轴压缩条件下,沿晶破坏是主导非均质岩石破坏的重要原因,晶间裂纹和穿晶裂纹逐步贯通,最终使试样展现出宏观的破坏模式;在动态冲击条件下,各矿物晶内及晶间的微裂纹增长过程均存在萌生期、快速增长期、缓慢增长期和停止增长期4个阶段;与静态单轴压缩条件下微裂纹数的增长模式相似,动态破坏初期晶间裂纹数明显高于晶内裂纹数,岩石主要发生沿晶损伤破坏,随着加载的进行和岩石破坏程度的提升,动态破坏的晶内裂纹数逐渐超过晶间裂纹数。此外,模拟中不同冲击载荷下峰值应变率与对应的峰值载荷以及动态峰值强度与对应的峰值载荷均表现出良好的线性关系,为快速确定岩石相关动态力学参数提供了简便的方法。

     

  • 图  PFC-GBM的构建过程

    Figure  1.  Construction process of PFC-GBM

    图  黏结分布及黏结原理

    Figure  2.  Bond distribution and bond principle

    图  试样应力-应变曲线及破坏模式的数值模拟与实验结果[18]对比

    Figure  3.  Comparison of numerical simulation and experimental results[18] of stress-strain curves and failure modes

    图  非均质岩石单轴破坏的微裂纹演化过程

    Figure  4.  Microcrack evolution of heterogeneous rock under uniaxial failure condition

    图  单轴破坏中的微裂纹演化过程

    Figure  5.  Microcrack evolution in uniaxial failure

    图  微裂纹统计及细化分组

    Figure  6.  Microcracks statistics and subdivision

    图  耦合SHPB系统及应力波施加

    Figure  7.  Coupling SHPB system and stress wave application

    图  耦合SHPB系统中杆件应力波的传播过程

    Figure  8.  Stress wave propagation of the rod in coupling SHPB system

    图  杆件应力时程曲线

    Figure  9.  Stress-time history curve of the rod

    图  10  不同冲击载荷下的应力平衡验证

    Figure  10.  Uniformity of stress under different impact loading

    图  11  冲击载荷下岩石内部微裂纹及宏观破坏模式演化过程

    Figure  11.  Evolution process of microcracks and macroscopic failure modes in rock under impact loading

    图  12  微裂纹数时程曲线

    Figure  12.  Time-history curves of microcrack number

    图  13  微裂纹细化分组

    Figure  13.  Micro-crack refinement grouping

    图  14  不同冲击载荷下的应力-应变曲线

    Figure  14.  Stress-strain curves under different impact loading

    图  15  σd${\dot \varepsilon _{\rm d}}$关于pm的线性拟合

    Figure  15.  Linear fitting of σd and ${\dot \varepsilon _{\rm d}}$ with respect to pm

    表  1  试样的细观参数

    Table  1.   Microscopic parameters of the specimen

    MaterialfФ/(°)K1Ef/GPaK2Sn/MPaSs/MPa
    Quartz0.20302.3532.334.042.0
    Feldspar0.15332.5432.527.233.6
    Mica0.18363.8343.820.425.2
    Grain boundary0.50425.0225.0 5.1 6.3
    下载: 导出CSV

    表  2  试样的主要力学参数

    Table  2.   Main mechanical parameters of the rock specimen

    MethodE/GPaμσ/MPa
    Simulation30.950.205125.72
    Experiment30.580.210126.57
    Error/%1.22.40.7
    下载: 导出CSV

    表  4  不同冲击载荷下试样破坏的模拟结果

    Table  4.   Simulation results of specimen failure under different impact loading

    T/μspm/MPaCrack distributionFragmentation distributionNdσd/MPa${\dot \varepsilon _{\rm d}}$/s−1
    200200 1017120.5660.28
    250 2386143.9476.65
    300 3241162.85104.59
    350 3950184.84114.55
    400 4776203.12157.64
    下载: 导出CSV
  • [1] 张杰, 郭奇峰, 蔡美峰, 等. 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟 [J]. 工程科学学报, 2021, 43(5): 636–646. doi: 10.13374/j.issn2095-9389.2020.03.15.003

    ZHANG J, GUO Q F, CAI M F, et al. Particle flow simulation of the crack propagation characteristics of granite under cyclic load [J]. Chinese Journal of Engineering, 2021, 43(5): 636–646. doi: 10.13374/j.issn2095-9389.2020.03.15.003
    [2] 李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014: 258−287.

    LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014: 258−287.
    [3] 李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405. doi: 10.13722/j.cnki.jrme.2017.0539

    LI X F, LI H B, LIU K, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. doi: 10.13722/j.cnki.jrme.2017.0539
    [4] ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. doi: 10.1016/S1003-6326(17)60021-9
    [5] 赵翰卿, 任会兰. 陶瓷巴西圆盘动态劈裂的离散元模拟 [J]. 兵器装备工程学报, 2021, 42(3): 119–124. doi: 10.11809/bqzbgcxb2021.03.023

    ZHAO H Q, REN H L. Discrete element simulation of dynamic splitting of ceramic Brazilian disc [J]. Journal of Ordnance Equipment Engineering, 2021, 42(3): 119–124. doi: 10.11809/bqzbgcxb2021.03.023
    [6] POTYONDY D O. The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions [J]. Geosystem Engineering, 2015, 18(1): 1–28. doi: 10.1080/12269328.2014.998346
    [7] INGA C E C, WALTON G, HOLLEY E. Statistical assessment of the effects of grain-structure representation and micro-properties on the behavior of bonded block models for brittle rock damage prediction [J]. Sustainability, 2021, 13(14): 7889. doi: 10.3390/su13147889
    [8] WANG Z H, YANG S L, LI L H, et al. A 3D Voronoi clump based model for simulating failure behavior of brittle rock [J]. Engineering Fracture Mechanics, 2021, 248: 107720. doi: 10.1016/j.engfracmech.2021.107720
    [9] 李博, 梁秦源, 周宇, 等. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2022, 41(6): 1114–1125. doi: 10.13722/j.cnki.jrme.2021.0837

    LI B, LIANG Q Y, ZHOU Y, et al. Research on crack propagation law of granite based on CT-GBM reconstruction method [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1114–1125. doi: 10.13722/j.cnki.jrme.2021.0837
    [10] ZHANG X P, JI P Q, PENG J, et al. A grain-based model considering pre-existing cracks for modelling mechanical properties of crystalline rock [J]. Computers and Geotechnics, 2020, 127: 103776. doi: 10.1016/j.compgeo.2020.103776
    [11] 胡训健, 卞康, 谢正勇, 等. 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟 [J]. 岩土工程学报, 2020, 42(8): 1540–1548. doi: 10.11779/CJGE202008020

    HU X J, BIAN K, XIE Z Y, et al. Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1540–1548. doi: 10.11779/CJGE202008020
    [12] LI H, YANG J, HAN Y, et al. Weibull grain-based model (W-GBM) for simulating heterogeneous mechanical characteristics of salt rock [J]. Engineering Analysis with Boundary Elements, 2019, 108: 227–243. doi: 10.1016/j.enganabound.2019.09.001
    [13] SAADAT M, TAHERI A. Modelling micro-cracking behaviour of granite during direct tensile test using cohesive GBM approach [J]. Engineering Fracture Mechanics, 2020, 239: 107297. doi: 10.1016/j.engfracmech.2020.107297
    [14] SAADAT M, TAHERI A. Modelling micro-cracking behaviour of pre-cracked granite using grain-based distinct element model [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4669–4692. doi: 10.1007/s00603-019-01862-0
    [15] SAADAT M, TAHERI A, KAWAMURA Y. Investigating asperity damage of natural rock joints in polycrystalline rocks under confining pressure using grain-based model [J]. Computers and Geotechnics, 2021, 135: 104144. doi: 10.1016/j.compgeo.2021.104144
    [16] LIU G, CAI M, HUANG M. Mechanical properties of brittle rock governed by micro-geometric heterogeneity [J]. Computers and Geotechnics, 2018, 104: 358–372. doi: 10.1016/j.compgeo.2017.11.013
    [17] 张涛, 蔚立元, 苏海健, 等. 基于FDM-DEM耦合的冲击损伤大理岩静态断裂力学特征研究 [J]. 爆炸与冲击, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089

    ZHANG T, YU L Y, SU H J, et al. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation [J]. Explosion and Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
    [18] 赵奎, 伍文凯, 曾鹏, 等. 不同细观组分花岗岩力学特性的颗粒流模拟 [J]. 矿业研究与开发, 2020, 40(1): 32–36. doi: 10.13827/j.cnki.kyyk.2020.01.007

    ZHAO K, WU W K, ZENG P, et al. Particle flow code simulation on mechanical properties of various meso-compositions granites [J]. Mining Research and Development, 2020, 40(1): 32–36. doi: 10.13827/j.cnki.kyyk.2020.01.007
    [19] 刘帅奇, 马凤山, 郭捷, 等. 基于Multi Pb-GBM方法的花岗岩细观力学行为数值研究 [J]. 岩石力学与工程学报, 2020, 39(11): 2283–2295. doi: 10.13722/j.cnki.jrme.2020.0374

    LIU S Q, MA F S, GUO J, et al. Numerical study on mesoscopic mechanical behaviors of granite based on Multi Pb-GBM method [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2283–2295. doi: 10.13722/j.cnki.jrme.2020.0374
    [20] CASTRO-FILGUEIRA U, ALEJANO L R, ARZÚA J, et al. Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks [J]. Procedia Engineering, 2017, 191: 488–495. doi: 10.1016/j.proeng.2017.05.208
    [21] 陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究 [J]. 地下空间与工程学报, 2018, 14(5): 1240–1249.

    CHEN P Y, KONG Y, YU H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240–1249.
    [22] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用 [M]. 北京: 中国建筑工业出版社, 2018.

    SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC5.0) [M]. Beijing: China Architecture and Building Press, 2018.
    [23] WONG L N Y, PENG J. Numerical investigation of micro-cracking behavior of brittle rock containing a pore-like flaw under uniaxial compression [J]. International Journal of Damage Mechanics, 2020, 29(10): 1543–1568. doi: 10.1177/1056789520914700
    [24] 王桂林, 王润秋, 孙帆. 块体离散元颗粒模型细观参数标定方法及花岗岩细观演化模拟 [J]. 长江科学院院报, 2022, 39(1): 86–93. doi: 10.11988/ckyyb.20200917

    WANG G L, WANG R Q, SUN F. A discrete element GBM simulation method for meso-parameter calibration and granite meso-evolution simulation [J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 86–93. doi: 10.11988/ckyyb.20200917
    [25] 周喻, 高永涛, 吴顺川, 等. 等效晶质模型及岩石力学特征细观研究 [J]. 岩石力学与工程学报, 2015, 34(3): 511–519. doi: 10.13722/j.cnki.jrme.2015.03.008

    ZHOU Y, GAO Y T, WU S C, et al. An equivalent crystal model for mesoscopic behaviour of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 511–519. doi: 10.13722/j.cnki.jrme.2015.03.008
    [26] 方新宇, 许金余, 刘石, 等. 岩石SHPB试验中子弹形状对加载波形的数值模拟 [J]. 地下空间与工程学报, 2013, 9(5): 1000–1005.

    FANG X Y, XU J Y, LIU S, et al. Numerical simulation on the influence of projectile shape on loading waveform in SHPB tests of rocks [J]. Chinese Journal of Underground Space and Engineering, 2013, 9(5): 1000–1005.
    [27] 杨友山, 陈小伟. 脉冲整形器对SHPB波形的影响 [J]. 西南科技大学学报, 2013, 28(1): 36–42. doi: 10.3969/j.issn.1671-8755.2013.01.008

    YANG Y S, CHEN X W. The effect of impulse shaper on the SHPB waves [J]. Journal of Southwest University of Science and Technology, 2013, 28(1): 36–42. doi: 10.3969/j.issn.1671-8755.2013.01.008
    [28] 杨阳, 王建国, 方士正, 等. 霍普金森撞击杆对入射波形影响的数值模拟 [J]. 工程爆破, 2020, 26(1): 7–14, 35. doi: 10.3969/j.issn.1006-7051.2020.01.002

    YANG Y, WANG J G, FANG S Z, et al. Numerical simulation on the influence of incident wave shape by Hopkinson striker bar [J]. Engineering Blasting, 2020, 26(1): 7–14, 35. doi: 10.3969/j.issn.1006-7051.2020.01.002
    [29] 平琦, 马芹永, 袁璞. 岩石SHPB实验加载过程中应力平衡问题分析 [J]. 爆炸与冲击, 2013, 33(6): 655–661. doi: 10.11883/1001-1455(2013)06-0655-07

    PING Q, MA Q Y, YUAN P. Stress equilibrium in rock specimen during the loading process of SHPB experiment [J]. Explosion and Shock Waves, 2013, 33(6): 655–661. doi: 10.11883/1001-1455(2013)06-0655-07
    [30] 张涛, 蔚立元, 鞠明和, 等. 基于PFC3D-GBM的晶体-单元体尺寸比对花岗岩动态拉伸特性影响分析 [J]. 岩石力学与工程学报, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303

    ZHANG T, YU L Y, JU M H, et al. Study on the effect of grain size-particle size ratio on the dynamic tensile properties of granite based on PFC3D-GBM [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  70
  • PDF下载量:  33
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-04-29
  • 网络出版日期:  2023-07-11
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回