类向日葵夹芯圆柱壳的准静态轴向吸能特性与优化

牛林耕 闫栋 王根伟 宋辉 郭美卿

牛林耕, 闫栋, 王根伟, 宋辉, 郭美卿. 类向日葵夹芯圆柱壳的准静态轴向吸能特性与优化[J]. 高压物理学报, 2023, 37(4): 044206. doi: 10.11858/gywlxb.20230637
引用本文: 牛林耕, 闫栋, 王根伟, 宋辉, 郭美卿. 类向日葵夹芯圆柱壳的准静态轴向吸能特性与优化[J]. 高压物理学报, 2023, 37(4): 044206. doi: 10.11858/gywlxb.20230637
NIU Lingeng, YAN Dong, WANG Genwei, SONG Hui, GUO Meiqing. Quasi-Static Axial Energy Absorption Characteristics and Optimization of Sunflower-Like Sandwich Cylindrical Shells[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044206. doi: 10.11858/gywlxb.20230637
Citation: NIU Lingeng, YAN Dong, WANG Genwei, SONG Hui, GUO Meiqing. Quasi-Static Axial Energy Absorption Characteristics and Optimization of Sunflower-Like Sandwich Cylindrical Shells[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044206. doi: 10.11858/gywlxb.20230637

类向日葵夹芯圆柱壳的准静态轴向吸能特性与优化

doi: 10.11858/gywlxb.20230637
基金项目: 国家自然科学基金(11872265);山西省科技重大专项(202101120401007)
详细信息
    作者简介:

    牛林耕(1997-),男,硕士研究生,主要从事轻质吸能结构研究. E-mail:niulingeng2022@163.com

    通讯作者:

    王根伟(1974-),男,博士,副教授,主要从事冲击动力学、新能源汽车轻量化及安全防护研究. E-mail:gwang@tyut.edu.cn

  • 中图分类号: O347

Quasi-Static Axial Energy Absorption Characteristics and Optimization of Sunflower-Like Sandwich Cylindrical Shells

  • 摘要: 采用实验、理论和数值模拟方法研究了类向日葵夹芯圆柱壳在准静态轴向加载下的吸能特性。首先,对3种内径的夹芯圆柱壳及其构件进行了准静态轴向压缩实验和数值模拟。结果表明:所有夹芯圆柱壳的比吸能和压溃力效率都大于其各个组成构件以及构件之和;芯壳的波浪形结构比圆柱壳结构具有更好的能量吸收能力;圆柱壳和波浪形曲线芯壳的联合使用可以有效地提高薄壁金属结构的吸能效率。其次,基于简化的超级折叠单元理论,推导了夹芯圆柱壳的轴向平均压溃力的理论公式。理论预测的平均压溃力与实验结果及数值模拟结果间的相对误差均在10%以内。最后,以比吸能最大和峰值压溃力最小为目标,进行了类向日葵夹芯圆柱壳吸能特性的多目标优化设计,得到了夹芯圆柱壳比吸能和峰值压溃力的Pareto前沿,优化后的夹芯圆柱壳的比吸能和平均压溃力均有提高,与此同时,质量减小。

     

  • 图  夹芯圆柱壳的截面形状

    Figure  1.  Cross-section of sandwich cylindrical shell

    图  夹芯圆柱壳的组成

    Figure  2.  Composition of sandwich cylindrical shell

    图  AA6061铝合金的应力-应变曲线

    Figure  3.  Stress-strain curve of AA6061 aluminum alloy

    图  夹芯圆柱壳及其构件

    Figure  4.  Sandwich cylindrical shells and its components

    图  准静态压缩实验平台

    Figure  5.  Quasi-static compression experiment platform

    图  实验获得的夹芯圆柱壳及其构件的力-位移曲线

    Figure  6.  Experimental force-displacement curves of sandwich cylindrical shells and its components

    图  内径为25 mm的夹芯圆柱壳在轴向压缩下的有限元模型

    Figure  7.  Finite element model of sandwich cylindrical shell with a inner diameter of 25 mm under axial compression

    图  有限元模型的网格敏感性分析

    Figure  8.  Mesh sensitivity analysis of finite element model

    图  动能与内能的比较

    Figure  9.  Comparison of kinetic energy and internal energy

    图  10  实验和有限元模拟获得的内径为25 mm的夹芯圆柱壳及其构件的变形过程

    Figure  10.  Deformation processes of sandwich cylindrical shell with the inner diameter of 25 mm and its components obtained by experiment and simulation

    图  11  实验和有限元模拟获得的内径为25 mm夹芯圆柱壳及其构件的力-位移曲线

    Figure  11.  Force-displacement curves of the experiment and finite element simulation for the sandwich cylindrical shells with an inner diameter of 25 mm and its components

    图  12  实验和有限元模拟获得的内径为25 mm夹芯圆柱壳及其构件的能量吸收-位移曲线

    Figure  12.  Energy absorption-displacement curves of the experiment and finite element simulation for the sandwich cylindrical shell with an inner diameter of 25 mm and its components

    图  13  数值模拟获得的夹芯圆柱壳及其构件的力-位移曲线

    Figure  13.  Simulated force-displacement curves of sandwich cylindrical shells and its components

    图  14  有限元模拟得到的夹芯圆柱壳及其构件的能量吸收-位移曲线

    Figure  14.  Simulated energy absorption-displacement curves of sandwich cylindrical shells and its components

    图  15  有限元模拟得到的夹芯圆柱壳及其构件的比能量吸收-位移曲线

    Figure  15.  Simulated specific energy absorption-displacement curves of sandwich cylindrical shells and its components

    图  16  有限元模拟得到的不同内径的夹芯圆柱壳及其构件的SEA

    Figure  16.  Simulated SEA of sandwich cylindrical shells and its components with different inner diameters

    图  17  内径为25 mm的夹芯圆柱壳及其构件在31.5 mm位移处的变形

    Figure  17.  Deformation of sandwich cylindrical shell with the inner diameter of 25 mm and its components at a displacement of 31.5 mm

    图  18  基本折叠单元的理想折叠过程

    Figure  18.  Ideal folding process of a basic folding element

    图  19  角单元类型

    Figure  19.  Types of corner element

    图  20  4面板单元的简化过程

    Figure  20.  Simplify process of 4-panel element

    图  21  夹芯圆柱壳的最优解集的Pareto前沿

    Figure  21.  Pareto front of the optimal solution set for sandwich cylindrical shells

    图  22  优化前后的力-位移曲线对比

    Figure  22.  Comparison of force-displacement curves before and after optimization

    表  1  AA6061铝合金的材料属性

    Table  1.   Material properties of AA6061 aluminium alloy

    Density/(kg·m−3)Young’s modulus/GPaInitial yield stress/MPaUltimate strength/MPaPoison’s ratio
    2.7×10368.22272820.3
    下载: 导出CSV

    表  2  夹芯圆柱壳及其构件的壁厚和质量

    Table  2.   Wall thickness and mass of sandwich cylindrical shells and its components

    Itemt/mm m/kg
    RI=15 mmRI=25 mmRI=35 mmRI=15 mmRI=25 mmRI=35 mm
    SCS1.001.081.11 0.1020.1030.103
    IS0.960.981.040.0100.0180.025
    CS0.961.041.100.0580.0460.037
    OS0.921.061.080.0290.0320.032
    下载: 导出CSV

    表  3  实验和有限元模拟获得的夹芯圆柱壳及其构件的SEA对比

    Table  3.   SEA comparison of experiments and finite element simulaitons of sandwich cylindrical shells and its components

    NameESA for RI=15 mm ESA for RI=25 mm ESA for RI=35 mm
    Exp./(J·g−1)Sim./(J·g−1)Error/%Exp./(J·g−1)Sim./(J·g−1)Error/%Exp./(J·g−1)Sim./(J·g−1)Error/%
    SCS34.8231.70−8.95 37.1437.871.93 32.9130.50−7.91
    IS30.4329.69−2.4321.1622.937.7318.5418.891.84
    OS15.2315.01−1.4616.4916.14−2.1715.4816.455.93
    CS21.1824.4413.3626.1228.107.0523.8522.63−5.39
    下载: 导出CSV

    表  4  内径为25 mm的夹芯圆柱壳及其构件的能量吸收性能指标

    Table  4.   Energy absorption performance indicators of sandwich cylindrical shell with the inner diameter of 25 mm and its components

    Itemm/kgEA/kJESA/(J·g−1)pp/kNηc
    SCS0.1064.0237.87217.360.59
    IS0.0180.4022.9333.270.38
    OS0.0320.5116.1457.100.28
    CS0.0471.6928.1192.150.45
    下载: 导出CSV

    表  5  理论预测与实验及模拟结果的对比

    Table  5.   Comparison of theoretical predictions with experiments and simulations

    RI/mmt/mmpm/kN Error/%
    TheorySim.Exp.Theory relative to simulationTheory relative to experiment
    151.00109.1106.8112.2 2.15−2.76
    251.08115.1121.2121.2 −5.03−5.03
    351.11116.5114.2107.72.018.17
    下载: 导出CSV

    表  6  夹芯圆柱壳的样本点及响应值

    Table  6.   Sample points and response values of sandwich cylindrical shells

    No.RI/mmRO/mmt/mmpp/kNESA/(J·g−1)
    123.0537.050.816154.143.7
    223.5846.001.079273.341.6
    332.0038.110.763129.540.4
    427.7936.530.711119.241.9
    526.7443.370.974217.142.5
    631.4742.320.868170.940.5
    728.3244.421.500360.658.7
    828.8444.950.658142.634.7
    922.0038.631.237269.452.7
    1022.5341.790.921208.240.6
    1130.9541.261.289262.353.8
    1225.1639.680.553104.733.3
    1324.6343.890.605132.930.4
    1429.8937.581.184213.851.7
    1525.6836.001.342249.760.6
    1629.3740.740.50091.630.7
    1730.4245.471.132258.847.3
    1824.1142.841.395337.452.7
    1927.2640.211.447307.062.0
    2026.2139.161.026203.348.0
    下载: 导出CSV

    表  7  夹芯圆柱壳近似模型的预测精度评估

    Table  7.   Evaluation of prediction accuracy of the approximation models for sandwich cylindrical shell

    ModelR2 P Q
    ppESA ppESA ppESA
    KRG0.97420.9687 0.04580.0520 0.15010.1354
    RBF0.99510.97370.01980.04760.06830.1088
    RSM0.99930.97180.00760.04940.01710.1137
    下载: 导出CSV

    表  8  NSGA-Ⅱ算法参数设置

    Table  8.   Parameters of NSGA-Ⅱ algorithm

    Population sizeNumber of iterationsCrossover probabilityCrossover distribution indexMutation distribution index
    12400.91020
    下载: 导出CSV

    表  9  优化获得的PCF和 SEA 与有限元结果对比

    Table  9.   PCF and SEA comparison between optimization results and finite element results

    pp/kN ESA/(J·g−1) Error/%
    OptimizationSimulation OptimizationSimulation ppESA
    204.1206.2 53.752.2 1.02.9
    下载: 导出CSV

    表  10  优化前后模拟结果的对比

    Table  10.   Comparison of simulation results before and after optimization

    Case pp/kN ESA/(J·g−1)pm/kNm/kg
    Before optimization203.348.0140.00.092
    After optimization206.252.2146.20.088
    Change/% 1.43 8.75 4.43 −4.35
    下载: 导出CSV
  • [1] JOHNSON W, SODEN P D, AL-HASSANI S T S. Inextensional collapse of thin-walled tubes under axial compression [J]. The Journal of Strain Analysis for Engineering Design, 1977, 12(4): 317–330. doi: 10.1243/03093247V124317
    [2] ANDREWS K R F, ENGLAND G L, GHANI E. Classification of the axial collapse of cylindrical tubes under quasi-static loading [J]. International Journal of Mechanical Sciences, 1983, 25(9/10): 687–696.
    [3] 李志斌, 虞吉林, 郑志军, 等. 薄壁管及其泡沫金属填充结构耐撞性的实验研究 [J]. 实验力学, 2012, 27(1): 77–86.

    LI Z B, YU J L, ZHENG Z J, et al. An experimental study on the crashworthiness of thin-walled tubes and their metallic foam-filled structures [J]. Journal of Experimental Mechanics, 2012, 27(1): 77–86.
    [4] ALI M, OHIOMA E, KRAFT F, et al. Theoretical, numerical, and experimental study of dynamic axial crushing of thin walled pentagon and cross-shape tubes [J]. Thin-Walled Structures, 2015, 94: 253–272. doi: 10.1016/j.tws.2015.04.007
    [5] 荆友录, 温卫东, 魏民祥. 不同截面结构薄壁直梁的轴向耐撞性研究 [J]. 机械科学与技术, 2009, 28(4): 455–459. doi: 10.3321/j.issn:1003-8728.2009.04.008

    JING Y L, WEN W D, WEI M X. A study of the axial crashworthiness of thin-walled straight beams with different shapes [J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(4): 455–459. doi: 10.3321/j.issn:1003-8728.2009.04.008
    [6] VINAYAGAR K, SENTHIL KUMAR A. Crashworthiness analysis of double section bi-tubular thin-walled structures [J]. Thin-Walled Structures, 2017, 112: 184–193. doi: 10.1016/j.tws.2016.12.008
    [7] ZHENG G, WU S Z, SUN G Y, et al. Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes [J]. International Journal of Mechanical Sciences, 2014, 87: 226–240. doi: 10.1016/j.ijmecsci.2014.06.002
    [8] GOEL M D. Deformation, energy absorption and crushing behavior of single-, double- and multi-wall foam filled square and circular tubes [J]. Thin-Walled Structures, 2015, 90: 1–11. doi: 10.1016/j.tws.2015.01.004
    [9] CHEN H C, ZHANG Y, LIN J M, et al. Crushing responses and optimization of novel sandwich columns [J]. Composite Structures, 2021, 263: 113682. doi: 10.1016/j.compstruct.2021.113682
    [10] 马梦娇, 刘志芳, 李世强. 波纹芯层夹芯管的轴向压缩吸能特性与多目标优化 [J]. 高压物理学报, 2022, 36(6): 064201.

    MA M J, LIU Z F, LI S Q. Energy absorption and multi-objective optimization for sandwich tubes with a corrugated core under axial compression [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064201.
    [11] 葛平政, 张勇. 新颖波纹截面薄壁圆管的耐撞性 [J]. 华侨大学学报(自然科学版), 2016, 37(5): 531–535.

    GE P Z, ZHANG Y. Crashworthiness of novel thin-walled circular tube with novel corrugated cross section [J]. Journal of Huaqiao University (Natural Science), 2016, 37(5): 531–535.
    [12] 闫栋, 王根伟, 宋辉, 等. 类向日葵夹芯圆柱壳径向冲击数值模拟 [J]. 高压物理学报, 2020, 34(5): 054201.

    YAN D, WANG G W, SONG H, et al. Numerical simulation of radial impact on sunflower-like sandwich cylindrical shell [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201.
    [13] YIN H F, WEN G L, HOU S J, et al. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes [J]. Materials & Design, 2011, 32(8/9): 4449−4460.
    [14] ZHANG Y, XU X, WANG J, et al. Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load [J]. International Journal of Mechanical Sciences, 2018, 140: 407–431. doi: 10.1016/j.ijmecsci.2018.03.015
    [15] LI W W, LUO Y H, LI M, et al. A more weight-efficient hierarchical hexagonal multi-cell tubular absorber [J]. International Journal of Mechanical Sciences, 2018, 140: 241–249. doi: 10.1016/j.ijmecsci.2018.03.006
    [16] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin-Walled Structures, 2001, 39(4): 287–306. doi: 10.1016/S0263-8231(01)00006-4
    [17] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. doi: 10.1016/0734-743X(84)90005-8
    [18] LANGSETH M, HOPPERSTAD O S, HANSSEN A G. Crash behaviour of thin-walled aluminium members [J]. Thin-Walled Structures, 1998, 32(1/2/3): 127–150.
    [19] ZHANG Y, CHEN T T, XU X, et al. Out-of-plane mechanical behaviors of a side hierarchical honeycomb [J]. Mechanics of Materials, 2020, 140: 103227. doi: 10.1016/j.mechmat.2019.103227
    [20] TRAN T, HOU S J, HAN X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading [J]. Composite Structures, 2015, 119: 422–435. doi: 10.1016/j.compstruct.2014.09.019
    [21] LI Z C, RAKHEJA S, SHANGGUAN W B. Study on crushing behaviors of foam-filled thin-walled square tubes with different types and number of initiators under multiple angle loads [J]. Thin-Walled Structures, 2019, 145: 106376. doi: 10.1016/j.tws.2019.106376
  • 加载中
图(22) / 表(10)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  61
  • PDF下载量:  30
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-04-17
  • 录用日期:  2023-04-24
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回