Dynamic Response and Multi-Objective Optimization of Aluminum Foam-Filled Sandwich Tube under Lateral Blast Loading
-
摘要: 基于动力显式有限元法,研究了泡沫铝夹芯管在横向爆炸载荷下的动态响应,以芯层能量吸收及外管刚度为目标,对结构的抗爆性能进行了多目标优化设计。系统研究了泡沫铝夹芯管结构的几何参数、泡沫铝芯层相对密度和爆炸加载条件等对其变形规律和能量吸收性能的影响。结果表明:横向爆炸载荷下,泡沫铝夹芯管的变形区域集中在跨中位置,内外管通过跨中位置塑性变形和变形区域左右两端的弯曲变形吸收能量,泡沫铝芯层主要依靠芯层压缩吸收能量;减小外管壁厚或泡沫铝芯层相对密度能有效提高结构的比吸能,但会影响泡沫铝夹芯管内外管的变形程度;外管几何参数对结构吸能性能和内外管变形的影响程度远大于内管;基于泡沫铝夹芯管的数值模拟结果,构造了响应面模型并对其进行了多目标优化,给出了Pareto前沿图,可根据实际工程应用来确定泡沫铝夹芯管结构中内外管的壁厚与芯层的相对密度。Abstract: The dynamic response of aluminum foam-filled sandwich tubes subjected to lateral blast loading was investigated numerically using the dynamic explicit finite element method. Based on numerical simulation, the structural blast resistance was optimized with the core energy absorption and outer tube stiffness as the optimization objectives. The effects of structural geometric parameters, the relative density of the aluminum foam core layer, and blast loading conditions on the deformation patterns and energy absorption properties of aluminum foam-filled sandwich tube have been systematically investigated. The study results indicate that the deformation region of the aluminum foam-filled sandwich tube under lateral blast loading is mainly concentrated in the middle span. Energy absorption occurs through plastic deformation in the middle of the span and bending deformation at the left and right ends of the deformed region for both the inner and outer tubes. In contrast, the energy absorption of the aluminum foam core layer relies primarily on core compression. Reducing of the thickness of the outer tube or the relative density of the aluminum foam core layer can effectively improve the specific energy absorption of the structure and increase the deformation of the inner and outer tubes. The effect of the geometry parameters of the outer tube on the energy absorption properties of the structure and the deformation of the inner and outer tubes is much larger than that of the inner tube. A response surface model is constructed based on the numerical simulation results of aluminum foam-filled sandwich tube. Subsequently, multi-objective optimization is performed and the resulting Pareto front graph is provided. The determination of the wall thickness of the inner and outer tubes, together with the relative density of the aluminum foam core layers in the aluminum foam-filled sandwich tube, can be based on the specific engineering application requirements.
-
ρ*/% ρ/(g·cm−3) E/MPa μ μc μp 10 0.27 48 0 1.41 0.17 15 0.40 71 0 1.12 0.29 20 0.54 143 0 1.10 0.30 表 2 理论冲量与实验冲量的对比
Table 2. Comparison of impulse between theoretical solution and experiment
Test piece Ws/g R/mm D/mm H/mm m/kg p0/MPa IE/(N·s) IT/(N·s) $\dfrac{ {I{_{ \rm{T } } }-I{_{ \rm{E} } } } }{ {I{_{ \rm{E} } } } }\Big/$% No.1 30 40 76 0.7 96.8 27.7 7.1 7.4 4.2 No.2 50 40 76 0.7 96.7 45.8 12.9 12.2 −5.4 表 3 试件几何参数
Table 3. Geometric parameter of specimens
Test piece D/mm d/mm H/mm h/mm L/mm m/g NS01 101 76 0.7 0.7 280 1 242.62 NS02 101 65 0.7 0.7 280 1 326.02 NS03 101 54 0.7 0.7 280 1 388.13 NS04 90 54 0.7 0.7 280 1 150.28 NS05 79 54 0.7 0.7 280 933.72 NS06 101 76 0.8 0.7 280 1 312.19 NS07 101 76 0.9 0.7 280 1 381.75 NS08 101 76 0.7 0.8 280 1 294.97 NS09 101 76 0.7 0.9 280 1 347.31 表 4 外管直径和壁厚的影响
Table 4. Effect of outer tube diameter and wall thickness
Test piece Et/J m/g Ea/(J·g−1) wo/mm wi/mm NS03 539.878 1 388.13 0.389 10.78 1.95 NS04 442.605 1 150.28 0.385 9.06 2.21 NS05 354.622 933.72 0.380 8.88 2.87 NS01 542.923 1 242.62 0.437 10.06 2.45 NS06 456.645 1 312.19 0.348 7.61 2.16 NS07 388.472 1 381.75 0.281 5.81 1.76 表 5 内管直径和壁厚的影响
Table 5. Effect of inner tube diameter and wall thickness
Test piece Et/J m/g Ea/(J·g−1) wo/mm wi/mm NS01 542.923 1 242.62 0.437 10.06 2.45 NS02 546.692 1 326.02 0.412 10.39 2.32 NS03 539.878 1 388.13 0.389 10.78 1.95 NS08 542.470 1 294.97 0.419 9.92 2.16 NS09 542.161 1 347.31 0.402 9.81 1.92 表 6 泡沫铝相对密度的影响
Table 6. Effect of relative density of aluminum foam
ρ*/% p0/MPa Et/J m/g Ea/(J·g−1) wo/mm wi/mm 10 36.8 614.301 1 116.12 0.550 14.77 4.99 15 36.8 542.923 1 242.62 0.437 10.06 2.45 20 36.8 379.921 1 378.86 0.276 4.82 2.35 表 7 爆炸加载条件的影响
Table 7. Effect of blast loading conditions
R/mm Ws/g p0/MPa Et/J Ea/(J·g−1) wo/mm wi/mm 37 30 34.9 935.594 0.753 14.96 4.34 40 30 27.7 542.923 0.437 10.06 2.45 40 35 32.3 776.974 0.625 12.60 3.62 40 40 36.8 1058.910 0.852 16.20 4.98 43 30 22.4 312.212 0.251 5.92 1.54 表 8 泡沫铝夹芯管组成部分的吸能百分比
Table 8. Energy absorption percentage of aluminum foam-filled sandwich tube components
Test piece $\rho ^* $/% R/mm Ws/g p0/MPa Energy absorption percentage/% Outer tube Foam core Inner tube NS01 15 40 30 27.7 59.9 32.0 8.1 NS02 15 40 30 27.7 62.6 30.5 6.9 NS03 15 40 30 27.7 61.8 33.7 4.5 NS04 15 40 30 27.7 62.4 30.7 6.9 NS05 15 40 30 27.7 59.7 32.3 8.0 NS06 15 40 30 27.7 64.0 28.1 7.9 NS07 15 40 30 27.7 66.3 25.6 8.2 NS08 15 40 30 27.7 59.5 32.4 8.0 NS09 15 40 30 27.7 59.2 32.9 7.9 NS01 10 40 30 27.7 79.8 17.5 2.7 NS01 20 40 30 27.7 52.0 32.2 15.8 NS01 15 37 30 34.9 61.7 31.0 7.3 NS01 15 43 30 22.4 61.5 29.6 8.9 NS01 15 40 35 32.3 62.0 30.5 7.5 NS01 15 40 40 36.8 61.5 31.2 7.3 表 9 最佳设计点
Table 9. Optimum design point
Design point H/mm h/mm $\,\rho ^ * $/% wo ECSA FEM/mm RSM/mm Error/% FEM/(J·g−1) RSM/(J·g−1) Error/% Op1 0.70 0.76 13.7 0.457 0.505 −9.5 10.50 11.14 −5.7 Op2 1.78 1.75 18.8 0.051 0.056 −8.9 0.64 0.59 8.5 Op3 0.84 1.76 20.0 0.194 0.205 −5.4 2.85 2.83 0.7 -
[1] MIRFENDERESKI L, SALIMI M, ZIAEIRAD S. Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings [J]. International Journal of Mechanical Sciences, 2008, 50(6): 1042–1057. doi: 10.1016/j.ijmecsci.2008.02.007 [2] ZHANG J X, DU J L, MIAO F X, et al. Plastic behavior of slender circular metal foam-filled tubes under transverse loading [J]. Thin-Walled Structures, 2022, 171: 108768. doi: 10.1016/j.tws.2021.108768 [3] 苏兴亚, 敬霖, 赵隆茂. 爆炸载荷下分层梯度泡沫铝夹芯板的失效模式与抗冲击性能 [J]. 爆炸与冲击, 2019, 39(6): 063103. doi: 10.11883/bzycj-2018-0198SU X Y, JING L, ZHAO L M. Failure modes and shock resistance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading [J]. Explosion and Shock Waves, 2019, 39(6): 063103. doi: 10.11883/bzycj-2018-0198 [4] FAN Z H, LU G X, RUAN D, et al. Dynamic lateral crushing of empty and sandwich tubes [J]. International Journal of Impact Engineering, 2013, 53: 3–16. doi: 10.1016/j.ijimpeng.2012.09.006 [5] HALL I W, GUDEN M, CLAAR T D. Transverse and longitudinal crushing of aluminum-foam filled tubes [J]. 2002, 46(7): 513−518. [6] SONG K J, LONG Y, JI C, et al. Plastic deformation of metal tubes subjected to lateral blast loads [J]. Mathematical Problems in Engineering. 2014, 2014: 250379. [7] YUEN S C K, NURICK G N, BRINCKMANN H B, et al. Response of cylindrical shells to lateral blast load [J]. International Journal of Protective Structure. 2013, 4(3): 209−230. [8] WIERZBICKI T, HOOFATT M S. Damage assessment of cylinders due to impact and explosive loading [J]. International Journal of Impact Engineering, 1993, 13(2): 215–241. doi: 10.1016/0734-743X(93)90094-N [9] JING L, WANG Z H, ZHAO L M. Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading-numerical simulations [J]. Composite Structures, 2013, 99: 213–223. doi: 10.1016/j.compstruct.2012.12.013 [10] JING L, WANG Z H, ZHAO L M. An approximate theoretical analysis for clamped cylindrical sandwich shells with metallic foam cores subjected to impulsive loading [J]. Composites Part B: Engineering, 2014, 60: 150–157. doi: 10.1016/j.compositesb.2013.12.047 [11] JING L, WANG Z H, SHIM V P W. An experimental study of the dynamic response of cylindrical sandwich shells with metallic foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2014, 71: 60–72. doi: 10.1016/j.ijimpeng.2014.03.009 [12] HOO FATT M S, SURABHI H. Blast resistance and energy absorption of foam-core cylindrical sandwich shells under external blast [J]. Composite Structures, 2012, 94(11): 3174–3185. doi: 10.1016/j.compstruct.2012.05.013 [13] LIU Z F, ZHANG T H, LI S Q, et al. Experiment and numerical simulation on the dynamic response of foam-filled tubes under lateral blast loading [J]. Acta Mechanica Solida Sinica, 2021, 34(6): 937–953. doi: 10.1007/s10338-021-00285-1 [14] BAROUTAJI A, GILCHRIST M D, SMYTH D, et al. Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading [J]. Thin-Walled Structures, 2015, 86: 121–131. doi: 10.1016/j.tws.2014.08.018 [15] BAROUTAJI A, GILCHRIST M D, SMYTH D, et al. Analysis and optimization of sandwich tubes energy absorbers under lateral loading [J]. International Journal of Impact Engineering, 2015, 82: 74–88. doi: 10.1016/j.ijimpeng.2015.01.005 [16] QI C, YANG S, YANG L J, et al. Blast resistance and multi-objective optimization of aluminum foam-cored sandwich panels [J]. Composite Structures, 2013, 105: 45–57. doi: 10.1016/j.compstruct.2013.04.043 [17] LI S Q, YU B L, KARAGIOZOVA D, et al. Experimental, numerical, and theoretical studies of the response of short cylindrical stainless steel tubes under lateral air blast loading [J]. International Journal of Impact Engineering, 2019, 124: 48–60. doi: 10.1016/j.ijimpeng.2018.10.004 [18] LI S Q, WANG Z H, WU G Y, et al. Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 262–271. doi: 10.1016/j.compositesa.2013.10.019 [19] GOEL M D, MATSAGAR V A, GUPTA A K, et al. An abridged review of blast wave parameters [J]. Defence Science Journal, 2012, 62(5): 300–306. doi: 10.14429/dsj.62.1149 [20] 李磊, 马宏昊, 沈兆武. 基于正交设计方法的双锥罩结构优化设计 [J]. 爆炸与冲击, 2013, 33(6): 567–573. doi: 10.3969/j.issn.1001-1455.2013.06.002LI L, MA H H, SHEN Z W. Optimal design of biconical liner structure based on orthogonal design method [J]. Explosion and Shock Waves, 2013, 33(6): 567–573. doi: 10.3969/j.issn.1001-1455.2013.06.002