硬质相形状对Ti-Al3Ti仿生复合材料断裂行为影响的数值模拟研究

修承东 王长峰 李冰 管仁国

修承东, 王长峰, 李冰, 管仁国. 硬质相形状对Ti-Al3Ti仿生复合材料断裂行为影响的数值模拟研究[J]. 高压物理学报, 2023, 37(4): 044201. doi: 10.11858/gywlxb.20230629
引用本文: 修承东, 王长峰, 李冰, 管仁国. 硬质相形状对Ti-Al3Ti仿生复合材料断裂行为影响的数值模拟研究[J]. 高压物理学报, 2023, 37(4): 044201. doi: 10.11858/gywlxb.20230629
XIU Chengdong, WANG Changfeng, LI Bing, GUAN Renguo. Numerical Simulation Study on the Influence of Hard Phase Shape on the Fracture Behavior of Ti-Al3Ti Bionic Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044201. doi: 10.11858/gywlxb.20230629
Citation: XIU Chengdong, WANG Changfeng, LI Bing, GUAN Renguo. Numerical Simulation Study on the Influence of Hard Phase Shape on the Fracture Behavior of Ti-Al3Ti Bionic Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044201. doi: 10.11858/gywlxb.20230629

硬质相形状对Ti-Al3Ti仿生复合材料断裂行为影响的数值模拟研究

doi: 10.11858/gywlxb.20230629
基金项目: 国家重点研发计划项目(2022YFB3706801,2022YFE0137900);辽宁省应用基础研究计划项目 (2022JH2/101300003)
详细信息
    作者简介:

    修承东(1997-),男,硕士研究生,主要从事仿生复合材料研究. E-mail:xcdxcd1028@163.com

    通讯作者:

    王长峰(1984-),男,博士,讲师,主要从事冲击动力学研究. E-mail:chfwang@djtu.edu.cn

    李 冰(1977-),男,博士,教授,主要从事轻质合金制备研究. E-mail:libing@djtu.com

  • 中图分类号: O347.3

Numerical Simulation Study on the Influence of Hard Phase Shape on the Fracture Behavior of Ti-Al3Ti Bionic Composites

  • 摘要: Al3Ti具有低密度、高硬度等特点,然而,由于其具有较高的脆性,导致较小的变形下便会发生破碎。为了提高Al3Ti的应用范围,受生物结构的启发,根据贝壳珍珠层、海螺壳和鱼鳞的几何结构,建立了Ti-Al3Ti仿生有限元计算模型,研究了硬质相形状和加载速度对材料断裂的影响,从断裂行为、裂纹扩展过程和吸能效果等角度分析仿生复合材料的抗断裂机理。定义了形状系数,并对结构进行优化设计。结果表明,在准静态条件下,硬质相形状对仿珍珠层试样的断裂行为有显著影响。长方形硬质相能更好地抑制裂纹向载荷端扩展,从而提高试样的承载能力。形状系数在5.0左右的试样表现出最优的抗断裂能力和吸能效果。在动态冲击条件下,软质相抑制裂纹扩展的能力增强,使长方形试样的抗断裂能力和吸能效果得到进一步提高。

     

  • 图  不同生物的珍珠层结构示意图[13, 1718]

    Figure  1.  Schematic diagrams of pearl structures in different organisms[13, 1718]

    图  不同硬质相形状的有限元模型

    Figure  2.  Finite element models with different shapes of hard phase

    图  Ti-Al3Ti复合材料试样示意图

    Figure  3.  Schematic diagram of Ti-Al3Ti composite specimen

    图  模拟结果与实验结果的对比

    Figure  4.  Comparison of simulation and experimental results

    图  具有不同硬质相形状的试样的载荷-位移曲线

    Figure  5.  Load-displacement curves for specimens with different shapes of hard phase

    图  准静态条件下不同硬质相形状试样的等效应力云图

    Figure  6.  Equivalent stress contours for specimens with different shapes of hard phase under quasi-static loading

    图  准静态条件下无量纲形状系数与比吸能的关系

    Figure  7.  Relation between dimensionless shape factor and specific energy absorption under quasi-static conditions

    图  冲击速度为5 m/s时不同硬质相形状试样的载荷-位移曲线和比吸能

    Figure  8.  Load-displacement curves and specific energy absorptions of specimens with different shapes of hard phase under the impact velocity of 5 m/s

    图  冲击速度为5 m/s时不同硬质相形状试样的等效应力云图

    Figure  9.  Equivalent stress contours for specimens with different shapes of hard phase under the impact velocity of 5 m/s

    图  10  冲击速度为50 m/s时不同硬质相形状试样的载荷-位移曲线和比吸能

    Figure  10.  Load-displacement curves and specific energy absorptions of specimens with different shapes of hard phase under the impact velocity of 50 m/s

    图  11  冲击速度为50 m/s时不同硬质相形状试样的等效应力云图

    Figure  11.  Equivalent stress contours for specimens with different shapes of hard phase under the impact velocity of 50 m/s

    表  1  软质相材料Ti6Al4V的JC模型参数[19]

    Table  1.   Parameters of JC model for soft phase material Ti6Al4V[19]

    ρ/(g·cm−3)G/GPaa/GPab/GPacmn
    4.428113.81.0981.0920.0141.10.93
    下载: 导出CSV

    表  2  硬质相材料Al3Ti的JH-2模型参数[20]

    Table  2.   Parameters of JH-2 model for hard phase material Al3Ti[20]

    ρ/(g·cm−3)E/GPaABCMN
    3.352160.850.310.0130.210.29
    T/GPapHEL/GPaD1D2K1/GPaK2/GPaK3/GPa
    0.21.8420.021.852.012.60
    下载: 导出CSV
  • [1] 李红, 闫维嘉, 张禹, 等. 先进航空材料焊接过程热裂纹研究进展 [J]. 材料工程, 2022, 50(2): 50–61. doi: 10.11868/j.issn.1001-4381.2021.000676

    LI H, YAN W J, ZHANG Y, et al. Research progress of hot crack in fusion welding of advanced aeronautical materials [J]. Journal of Materials Engineering, 2022, 50(2): 50–61. doi: 10.11868/j.issn.1001-4381.2021.000676
    [2] ESPINOSA H D, RIM J E, BARTHELAT F, et al. Merger of structure and material in nacre and bone-Perspectives on de novo biomimetic materials [J]. Progress in Materials Science, 2009, 54(8): 1059–1100. doi: 10.1016/j.pmatsci.2009.05.001
    [3] MIZUTA N, MATSUURA K, KIRIHARA S, et al. Titanium aluminide coating on titanium surface using three-dimensional microwelder [J]. Materials Science and Engineering: A, 2008, 492(1/2): 199–204. doi: 10.1016/j.msea.2008.03.028
    [4] NOFAR M, HOSSEINI H R M, KOLAGAR-DAROONKOLAIE N. Fabrication of high wear resistant Al/Al3Ti metal matrix composite by in situ hot press method [J]. Materials & Design, 2009, 30(2): 280–286. doi: 10.1016/j.matdes.2008.04.071
    [5] HARACH D J, VECCHIO K S. Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air [J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1493–1505. doi: 10.1007/s11661-001-0237-0
    [6] PRICE R D, JIANG F C, KULIN R M, et al. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites [J]. Materials Science and Engineering: A, 2011, 528(7/8): 3134–3146.
    [7] LI T Z, JIANG F C, OLEVSKY E A, et al. Damage evolution in Ti6Al4V-Al3Ti metal-intermetallic laminate composites [J]. Materials Science and Engineering: A, 2007, 443(1/2): 1–15.
    [8] ADHARAPURAPU R R, VECCHIO K S, JIANG F C, et al. Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites [J]. Metallurgical and Materials Transactions A, 2005, 36(6): 1595–1608. doi: 10.1007/s11661-005-0251-8
    [9] 张海广, 王瑜, 安连浩, 等. 冲击载荷下分支交错层状仿生复合材料动态断裂行为的实验研究和数值模拟 [J]. 高压物理学报, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776

    ZHANG H G, WANG Y, AN L H, et al. Experimental study and numerical simulation of dynamic fracture behavior of branch staggered laminated biomimetic composites under impact loading [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776
    [10] 武晓东, 张海广, 王瑜, 等. 冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应 [J]. 高压物理学报, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559

    WU X D, ZHANG H G, WANG Y, et al. Dynamic responses of nare-like Voronoi structure under impact loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559
    [11] WANG R Z, SUO Z, EVANS A G, et al. Deformation mechanisms in nacre [J]. Journal of Materials Research, 2001, 16(9): 2485–2493. doi: 10.1557/JMR.2001.0340
    [12] YOURDKHANI M, PASINI D, BARTHELAT F. Multiscale mechanics and optimization of gastropod shells [J]. Journal of Bionic Engineering, 2011, 8(4): 357–368. doi: 10.1016/S1672-6529(11)60041-3
    [13] ZAREMBA C M, BELCHER A M, FRITZ M, et al. Critical transitions in the biofabrication of abalone shells and flat pearls [J]. Chemistry of Materials, 1996, 8(3): 679–690. doi: 10.1021/cm9503285
    [14] SARIKAYA M, GUNNISON K E, YASREBI M, et al. Mechanical property-microstructural relationships in abalone shell [J]. MRS Online Proceedings Library, 1989, 174(1): 109–116. doi: 10.1557/PROC-174-109
    [15] JACKSON A P, VINCENT J F V, TURNER R M. The mechanical design of nacre [J]. Proceedings of the Royal Society B: Biological Sciences, 1988, 234(1277): 415–440. doi: 10.1098/rspb.1988.0056
    [16] NUKALA P K V V, SIMUNOVIC S. A continuous damage random thresholds model for simulating the fracture behavior of nacre [J]. Biomaterials, 2005, 26(30): 6087–6098. doi: 10.1016/j.biomaterials.2005.03.013
    [17] SHIN Y A, YIN S, LI X Y, et al. Nanotwin-governed toughening mechanism in hierarchically structured biological materials [J]. Nature Communications, 2016, 7(1): 10772. doi: 10.1038/ncomms10772
    [18] GHAZLAN A, NGO T, TAN P, et al. Inspiration from nature’s body armours: a review of biological and bioinspired composites [J]. Composites Part B: Engineering, 2021, 205: 108513. doi: 10.1016/j.compositesb.2020.108513
    [19] LI T Z, GRIGNON F, BENSON D J, et al. Modeling the elastic properties and damage evolution in Ti-Al3Ti metal-intermetallic laminate (MIL) composites [J]. Materials Science and Engineering: A, 2004, 374(1/2): 10–26. doi: 10.1016/j.msea.2003.09.074
    [20] CAO Y, ZHU S F, GUO C H, et al. Numerical investigation of the ballistic performance of metal-intermetallic laminate composites [J]. Applied Composite Materials, 2015, 22(4): 437–456. doi: 10.1007/s10443-014-9416-1
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  60
  • PDF下载量:  24
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-04-25
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回