圆形嵌套层级多胞管在轴向冲击下的吸能特性

黄翠萍 邓小林

黄翠萍, 邓小林. 圆形嵌套层级多胞管在轴向冲击下的吸能特性[J]. 高压物理学报, 2023, 37(4): 044104. doi: 10.11858/gywlxb.20230619
引用本文: 黄翠萍, 邓小林. 圆形嵌套层级多胞管在轴向冲击下的吸能特性[J]. 高压物理学报, 2023, 37(4): 044104. doi: 10.11858/gywlxb.20230619
HUANG Cuiping, DENG Xiaolin. Energy Absorption Characteristics of Circular Nested HierarchicalMulti-Cell Tubes under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044104. doi: 10.11858/gywlxb.20230619
Citation: HUANG Cuiping, DENG Xiaolin. Energy Absorption Characteristics of Circular Nested HierarchicalMulti-Cell Tubes under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044104. doi: 10.11858/gywlxb.20230619

圆形嵌套层级多胞管在轴向冲击下的吸能特性

doi: 10.11858/gywlxb.20230619
基金项目: 国家自然科学基金(52065059);梧州学院校级科研项目(2022C013)
详细信息
    作者简介:

    黄翠萍(1992-),女,硕士,讲师,主要从事结构耐撞性与吸能研究.E-mail:huangcuiping59451@163.com

    通讯作者:

    邓小林(1984-),男,博士,教授,主要从事结构耐撞性及优化设计研究.E-mail:dengxiaolin3@163.com

  • 中图分类号: O342

Energy Absorption Characteristics of Circular Nested HierarchicalMulti-Cell Tubes under Axial Impact

  • 摘要: 将层级和嵌套相结合,设计了两种不同类型和嵌套方式的圆形嵌套层级多胞管,采用数值模拟方法对其轴向冲击下的吸能特性开展了系统的研究。研究结果表明,无论是相同壁厚还是相同质量,高层级多胞管相比低层级多胞管都具有更好的能量吸收能力。相同壁厚情况下,高层级多胞管的比能量吸收和冲击力效率最高分别高出22.49%和16.55%,与传统圆管相比,层级多胞管的比能量吸收和冲击力效率最高分别高出43.16%和36.45%。相同质量情况下,高层级多胞管的比能量吸收和冲击力效率最高分别提升了21.04%和24.47%。最后,系统地开展了层级数、壁厚等结构参数对圆形嵌套层级多胞管耐撞性的参数化研究。

     

  • 图  层级多胞管结构设计示意图

    Figure  1.  Schematic diagram of hierarchical multi-cell tube structure design

    图  耐撞性指标示意图

    Figure  2.  Crashworthiness index diagram

    图  有限元模型和AA6061O材料属性

    Figure  3.  Finite element model and material properties of AA6061O

    图  网格尺寸分析

    Figure  4.  Mesh size analysis

    图  有限元模型验证

    Figure  5.  Finite element model validation

    图  相同壁厚下圆管的能量吸收和力-位移曲线

    Figure  6.  Energy absorption and force-displacement curves of tubes with the same wall thickness

    图  相同壁厚下圆管的变形模式

    Figure  7.  Deformation modes of circular tube with the same wall thickness

    图  相同壁厚下圆管的耐撞性数据

    Figure  8.  Crashworthiness of round tubes with the same wall thickness

    图  相同质量下圆管的能量吸收和力-位移曲线

    Figure  9.  Energy absorption and force-displacement curves of tubes with the same mass

    图  10  相同质量下圆管的变形模式

    Figure  10.  Deformation modes of tubes with the same mass

    图  11  相同质量下的耐撞性分析

    Figure  11.  Crashworthiness analysis for the same mass

    图  12  不同层级数的嵌套层级多胞管能量吸收和力-位移曲线

    Figure  12.  Energy absorption and force-displacement curves of circular nested hierarchy multicellular tubes with different orders

    图  13  不同层级数的嵌套层级多胞管的耐撞性分析

    Figure  13.  Crashworthiness analysis of circular nested hierarchy multicellular tubes with different orders

    图  14  不同壁厚圆形嵌套三角形层级多胞管的耐撞性分析

    Figure  14.  Crashworthiness analysis of circular nested triangular hierarchy multicellular tubes with different wall thicknesses

    图  15  不同壁厚圆形嵌套四边形层级多胞管的耐撞性分析

    Figure  15.  Crashworthiness analysis of circular nested quadrilateral hierarchy multicellular tubes with different wall thicknesses

    表  1  相同壁厚条件下不同圆管的耐撞性数据

    Table  1.   Crashworthiness of different tubes with the same wall thickness

    Multicellular tubesh/mmm/kgEA/JESA/(kJ·kg–1)FI/kNη/%
    TCT1.500.0511027.3220.1821.5059.72
    CNT-11.500.0932248.1124.1741.1568.28
    CNT-21.500.1183043.6525.7953.9270.55
    CNT-3-CC1.500.1394015.8828.8961.6081.49
    CNT-3-CS1.500.1393850.7127.7061.7877.92
    CNQ-11.500.0972360.6324.4142.6969.12
    CNQ-21.500.1333251.8724.4559.5768.24
    CNQ-3-CC1.500.1654382.7726.5675.5072.56
    CNQ-3-CS1.500.1654933.7429.9076.5680.56
    下载: 导出CSV

    表  2  相同质量条件下的耐撞性对比

    Table  2.   Crashworthiness comparison under the same mass

    Multicellular tubesh/mmm/kgEA/JESA/(kJ·kg–1)FI/kNη/%
    CNT-11.040.0651323.6320.5226.7261.93
    CNT-20.820.0651358.7321.0625.9465.47
    CNT-3-CC0.700.0651384.2321.4624.6070.33
    CNT-3-CS0.700.0651352.5220.9724.6068.74
    CNQ-11.000.0651388.4021.5325.9166.98
    CNQ-20.730.0651282.7319.8924.4965.46
    CNQ-3-CC0.600.0651397.4321.6723.9373.00
    CNQ-3-CS0.600.0651681.0526.0624.6283.37
    下载: 导出CSV

    表  3  层级数对圆形嵌套层级多胞管耐撞性影响的对比

    Table  3.   Comparation on the effect of order on structural crashworthiness

    Multicellular tubesh/mmm/kgEA/JESA/(kJ·kg–1)FI/kNη/%
    CNT-12.000.1243505.9528.2757.5476.17
    CNT-22.000.1584820.9330.5175.3080.03
    CNT-3-CC2.000.1865787.8431.1287.5482.65
    CNT-4-CC2.000.2036582.2432.4295.6686.01
    CNT-3-CS2.000.1865797.1531.1786.3583.92
    CNT-4-CS2.000.2036520.4732.1295.4185.43
    CNQ-12.000.1293427.0226.5759.8871.54
    CNQ-22.000.1775366.1630.3283.2480.58
    CNQ-3-CC2.000.2206730.0430.59105.5579.71
    CNQ-4-CC2.000.2548475.4733.37121.7887.00
    CNQ-3-CS2.000.2207528.5734.22106.5688.31
    CNQ-4-CS2.000.2548909.8035.08122.8190.69
    下载: 导出CSV
  • [1] HUANG H, XU S C. Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads [J]. Thin-Walled Structures, 2019, 144: 106333. doi: 10.1016/j.tws.2019.106333
    [2] WU S Z, ZHENG G, SUN G Y, et al. On design of multi-cell thin-wall structures for crashworthiness [J]. International Journal of Impact Engineering, 2016, 88: 102–117. doi: 10.1016/j.ijimpeng.2015.09.003
    [3] 靳明珠, 尹冠生, 姚如洋, 等. 多边形薄壁多胞管的轴向吸能特性研究 [J]. 塑性工程学报, 2021, 28(1): 179–188. doi: 10.3969/j.issn.1007-2012.2021.01.024

    JIN M Z, YIN G S, YAO R Y, et al. Study on axial energy absorption characteristics of polygonal thin-walled multi-cell tube [J]. Journal of Plasticity Engineering, 2021, 28(1): 179–188. doi: 10.3969/j.issn.1007-2012.2021.01.024
    [4] 靳明珠, 尹冠生, 郝文乾, 等. 新型多胞管轴向吸能特性的理论和数值研究 [J]. 应用力学学报, 2021, 38(2): 480–489. doi: 10.11776/cjam.38.02.B012

    JIN M Z, YIN G S, HAO W Q, et al. Theoretical and numerical studies on the axial energy absorption characteristics of novel multi-cell tubes [J]. Chinese Journal of Applied Mechanics, 2021, 38(2): 480–489. doi: 10.11776/cjam.38.02.B012
    [5] TRAN T N, BAROUTAJI A, ESTRADA Q, et al. Crashworthiness analysis and optimization of standard and windowed multi-cell hexagonal tubes [J]. Structural and Multidisciplinary Optimization, 2021, 63(5): 2191–2209. doi: 10.1007/s00158-020-02794-y
    [6] XIONG J, ZHANG Y, SU L, et al. Experimental and numerical study on mechanical behavior of hybrid multi-cell structures under multi-crushing loads [J]. Thin-Walled Structures, 2022, 170: 108588. doi: 10.1016/j.tws.2021.108588
    [7] WANG Z G, ZHANG J, LI Z D, et al. On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression [J]. International Journal of Mechanical Sciences, 2020, 186: 105893. doi: 10.1016/j.ijmecsci.2020.105893
    [8] VIMAL KANNAN I, RAJKUMAR R. Crashworthiness and comparative analysis of polygonal single and bi-tubular structures under axial loading – experiments and FE modelling [J]. Journal of Theoretical and Applied Mechanics, 2020, 59(1): 81–94. doi: 10.15632/jtam-pl/128901
    [9] HA N S, PHAM T M, CHEN W S, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing [J]. Thin-Walled Structures, 2021, 169: 108315. doi: 10.1016/J.TWS.2021.108315
    [10] XU X, ZHANG Y, CHEN X B, et al. Crushing behaviors of hierarchical sandwich-walled columns [J]. International Journal of Mechanical Sciences, 2019, 161/162: 105021. doi: 10.1016/j.ijmecsci.2019.105021
    [11] HA N S, PHAM T M, HAO H, et al. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing [J]. International Journal of Mechanical Sciences, 2021, 201: 106464. doi: 10.1016/j.ijmecsci.2021.106464
    [12] WU J C, ZHANG Y, ZHANG F, et al. A bionic tree-liked fractal structure as energy absorber under axial loading [J]. Engineering Structures, 2021, 245: 112914. doi: 10.1016/J.ENGSTRUCT.2021.112914
    [13] DENG X L, QIN S G, HUANG J L. Crashworthiness analysis of gradient hierarchical multicellular columns evolved from the spatial folding [J]. Materials & Design, 2022, 215: 110435. doi: 10.1016/J.MATDES.2022.110435
    [14] QIN S G, DENG X L, LIU X Y. Crashworthiness analysis of bioinspired hierarchical gradient multicell tubes under axial impact [J]. Thin-Walled Structures, 2022, 179: 109591. doi: 10.1016/J.TWS.2022.109591
    [15] HUANG J L, ZHENG Z Y, DENG X L, et al. Crashworthiness analysis of gradient fractal thin-walled structure [J]. Thin-Walled Structures, 2022, 181: 110102. doi: 10.1016/J.TWS.2022.110102
    [16] QIN S G, DENG X L, LIU F Y. Energy absorption characteristics and crashworthiness of rhombic hierarchical gradient multicellular hexagonal tubes [J]. Mechanics of Advanced Materials and Structures, 2022: 2122640.
    [17] HE Y L, LI X, JIN T, et al. The crashworthiness design of multi-cell structures using the tessellations of self-similar inspired tubes [J]. Thin-Walled Structures, 2022, 180: 109810. doi: 10.1016/J.TWS.2022.109810
    [18] LI Z C, RAKHEJA S, SHANGGUAN W B. Crushing behavior and crashworthiness optimization of multi-cell square tubes under multiple loading angles [J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2020, 234(5): 1497–1511. doi: 10.1177/0954407019869127
    [19] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. doi: 10.1016/j.compositesb.2019.107496
    [20] ZHANG X, HUH H. Crushing analysis of polygonal columns and angle elements [J]. International Journal of Impact Engineering, 2010, 37(4): 441–451. doi: 10.1016/j.ijimpeng.2009.06.009
    [21] WEI Z Q, XU X H. Numerical study on impact resistance of novel multilevel bionic thin-walled structures [J]. Journal of Materials Research and Technology, 2022, 16: 1770–1780. doi: 10.1016/J.JMRT.2021.12.105
    [22] ZHANG X, ZHANG H. The crush resistance of four-panel angle elements [J]. International Journal of Impact Engineering, 2015, 78: 81–97. doi: 10.1016/j.ijimpeng.2014.12.004
    [23] ZHANG X, ZHANG H. Some problems on the axial crushing of multi-cells [J]. International Journal of Mechanical Sciences, 2015, 103: 30–39. doi: 10.1016/j.ijmecsci.2015.08.026
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  39
  • PDF下载量:  33
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-03-21
  • 录用日期:  2023-04-03
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回