二维层状材料FePSe3的高压物性

郑飞力 颜建 黄艳萍 罗轩 迟振华 吕心邓 崔田

郑飞力, 颜建, 黄艳萍, 罗轩, 迟振华, 吕心邓, 崔田. 二维层状材料FePSe3的高压物性[J]. 高压物理学报, 2023, 37(2): 021101. doi: 10.11858/gywlxb.20230617
引用本文: 郑飞力, 颜建, 黄艳萍, 罗轩, 迟振华, 吕心邓, 崔田. 二维层状材料FePSe3的高压物性[J]. 高压物理学报, 2023, 37(2): 021101. doi: 10.11858/gywlxb.20230617
ZHENG Feili, YAN Jian, HUANG Yanping, LUO Xuan, CHI Zhenhua, LYU Xindeng, CUI Tian. Physical Properties of Two-Dimensional Layered FePSe3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021101. doi: 10.11858/gywlxb.20230617
Citation: ZHENG Feili, YAN Jian, HUANG Yanping, LUO Xuan, CHI Zhenhua, LYU Xindeng, CUI Tian. Physical Properties of Two-Dimensional Layered FePSe3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021101. doi: 10.11858/gywlxb.20230617

二维层状材料FePSe3的高压物性

doi: 10.11858/gywlxb.20230617
基金项目: 国家自然科学基金(52072188);浙江省科技创新团队项目(2021R01004);宁波市科技计划项目(2021J121)
详细信息
    作者简介:

    郑飞力(1997-),男,硕士研究生,主要从事高压下二维超导材料的结构与性质研究.E-mail:zhengfeili@yeah.net

    通讯作者:

    黄艳萍(1987-),女,博士,副教授,主要从事高压下凝聚态物质的结构与性质研究.E-mail:huangyanping@nbu.edu.cn

    罗 轩(1981-),男,博士,研究员,主要从事量子关联单晶材料的制备和物性研究.E-mail:xluo@issp.ac.cn

    崔 田(1964-),男,博士,教授,主要从事高压等极端条件下新型功能材料的设计与合成研究.E-mail:cuitian@nbu.edu.cn

  • 中图分类号: O521.2

Physical Properties of Two-Dimensional Layered FePSe3 under High Pressure

  • 摘要: FePSe3在高压下会出现半导体到金属的转变、超导电性以及高自旋到低自旋的转变等多种有趣的物理现象,但目前对其在高压下的晶体结构分析仍以理论研究为主,结构的不确定阻碍了对其物理性质的深入研究。为此,利用金刚石对顶砧结合高压拉曼光谱、高压同步辐射X射线衍射以及高压电输运测量,对FePSe3在高压下的行为进行了研究。结果表明,FePSe3在低于60.0 GPa的压力范围内经历了3次结构相变,完成了LP—HP1—HP2—HP3的转变。首次在实验上观测到FePSe3的高压新相HP2和HP3,并给出其可能的空间对称群。HP2相和HP3相具有超导电性,超导温度随压力的升高而降低,致使超导相图呈现“穹顶”状。研究结果为进一步厘清FePSe3的压致相变行为提供了重要的实验支撑。

     

  • 图  沿a轴 (a)和c轴(b)方向观察的FePSe3的常压晶体结构示意图

    Figure  1.  Crystal structure of FePSe3 viewed along the a-axis (a) and the c-axis (b) under ambient pressure

    图  常温常压下FePSe3的XRD谱(a)和拉曼谱(b)

    Figure  2.  XRD pattern (a) and Raman spectrum (b) of FePSe3 measured at room temperature and ambient pressure

    图  不同压力下FePSe3的XRD谱(“*”代表有新峰出现)以及0.3、11.2、39.2、53.4 GPa压力下的结构精修图

    Figure  3.  XRD patterns of FePSe3 at selected pressures (asterisk indicates new peak) and the refined XRD patterns of FePSe3 at 0.3, 11.2, 39.2 and 53.4 GPa, respectively

    图  (a) 体积随压力的变化(虚线表示Birch-Murnaghan方程[26]拟合结果),(b) 晶胞参数随压力的变化

    Figure  4.  Pressure dependence of (a) volume (the dotted line represents the fitting of Birch-Murnaghan equation[26]) and (b) cell parameters

    图  不同压力下的拉曼光谱(a)以及拉曼频率随压力的变化关系(b)

    Figure  5.  Raman spectra under different pressures (a) and pressure dependence of Raman frequencies (b)

    图  (a) 1.3~10.3 GPa、(b) 14.6~31.0 GPa、(c) 37.2~67.7 GPa压力范围内FePSe3的电阻-温度曲线(插图显示了DAC内FePSe3样品形貌)

    Figure  6.  Evolution of the electrical resistance as a function of temperature for compressed FePSe3 at (a) 1.3–10.3 GPa, (b) 14.6–31.0 GPa, (c) 37.2–67.7 GPa (The inset shows the optical image of FePSe3 in the DAC)

    图  (a) 在不高于1.0 T的磁场作用下31.8 GPa时电阻随温度的变化关系以及(b) 31.8 GPa时Tc随磁场的变化

    Figure  7.  (a) Temperature dependence of resistance under different magnetic fields up to 1.0 T at 31.8 GPa, and (b) Tc dependence of external magnetic field at 31.8 GPa

    图  FePSe3的温度-压力相图

    Figure  8.  Temperature-pressure phase diagram of FePSe3

  • [1] KATSNELSON M I, NOVOSELOV K S, GEIM A K. Chiral tunnelling and the Klein paradox in graphene [J]. Nature Physics, 2006, 2(9): 620–625. doi: 10.1038/nphys384
    [2] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers [J]. Physical Review Letters, 2006, 97(18): 187401. doi: 10.1103/PhysRevLett.97.187401
    [3] BREC R, SCHLEICH D M, OUVRARD G, et al. Physical properties of lithium intercalation compounds of the layered transition-metal chalcogenophosphites [J]. Inorganic Chemistry, 1979, 18(7): 1814–1818. doi: 10.1021/ic50197a018
    [4] DUAN J M, CHAVA P, GHORBANI-ASL M, et al. Self-driven broadband photodetectors based on MoSe2/FePS3 van der Waals n-p type-Ⅱ heterostructures [J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11927–11936. doi: 10.1021/acsami.1c24308
    [5] KUMAR R, JENJETI R N, AUSTERIA M P, et al. Bulk and few-layer MnPS3: a new candidate for field effect transistors and UV photodetectors [J]. Journal of Materials Chemistry C, 2019, 7(2): 324–329. doi: 10.1039/C8TC05011B
    [6] LONG M S, SHEN Z, WANG R J, et al. Ultrasensitive solar-blind ultraviolet photodetector based on FePSe3/MoS2 heterostructure response to 10.6 µm [J]. Advanced Functional Materials, 2022, 32(34): 2204230. doi: 10.1002/adfm.202204230
    [7] KIM K, LIM S Y, KIM J, et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy [J]. 2D Materials, 2019, 6(4): 041001. doi: 10.1088/2053-1583/ab27d5
    [8] WIEDENMANN A, ROSSAT-MIGNOD J, LOUISY A, et al. Neutron diffraction study of the layered compounds MnPSe3 and FePSe3 [J]. Solid State Communications, 1981, 40(12): 1067–1072. doi: 10.1016/0038-1098(81)90253-2
    [9] LEE J U, LEE S, RYOO J H, et al. Ising-type magnetic ordering in atomically thin FePS3 [J]. Nano Letters, 2016, 16(12): 7433–7438. doi: 10.1021/acs.nanolett.6b03052
    [10] ZHANG J M, NIE Y Z, WANG X G, et al. Strain modulation of magnetic properties of monolayer and bilayer FePS3 antiferromagnet [J]. Journal of Magnetism and Magnetic Materials, 2021, 525: 167687. doi: 10.1016/j.jmmm.2020.167687
    [11] HU G J, ZHU Y M, XIANG J X, et al. Antisymmetric magnetoresistance in a van der Waals antiferromagnetic/ferromagnetic layered MnPS3/Fe3GeTe2 stacking heterostructure [J]. ACS Nano, 2020, 14(9): 12037–12044. doi: 10.1021/acsnano.0c05252
    [12] GU Y, ZHANG S Q, ZOU X L. Tunable magnetism in layered CoPS3 by pressure and carrier doping [J]. Science China Materials, 2021, 64(3): 673–682. doi: 10.1007/s40843-020-1453-0
    [13] WANG Y G, YING J J, ZHOU Z Y, et al. Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover [J]. Nature Communications, 2018, 9(1): 1914. doi: 10.1038/s41467-018-04326-1
    [14] DU K Z, WANG X Z, LIU Y, et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides [J]. ACS Nano, 2016, 10(2): 1738–1743. doi: 10.1021/acsnano.5b05927
    [15] FAN X F, CHANG C H, ZHENG W T, et al. The electronic properties of single-layer and multilayer MoS2 under high pressure [J]. The Journal of Physical Chemistry C, 2015, 119(19): 10189–10196. doi: 10.1021/acs.jpcc.5b00317
    [16] NAYAK A P, PANDEY T, VOIRY D, et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide [J]. Nano Letters, 2015, 15(1): 346–353. doi: 10.1021/nl5036397
    [17] ZHENG Y S, JIANG X X, XUE X X, et al. Ab initio study of pressure-driven phase transition in FePS3 and FePSe3 [J]. Physical Review B, 2019, 100(17): 174102. doi: 10.1103/PhysRevB.100.174102
    [18] EVARESTOV R A, KUZMIN A. Topological analysis of chemical bonding in the layered FePSe3 upon pressure-induced phase transitions [J]. Journal of Computational Chemistry, 2020, 41(31): 2610–2623. doi: 10.1002/jcc.26416
    [19] SCAGLIOTTI M, JOUANNE M, BALKANSKI M, et al. Raman scattering in antiferromagnetic FePS3 and FePSe3 crystals [J]. Physical Review B, 1987, 35(13): 7097–7104. doi: 10.1103/PhysRevB.35.7097
    [20] MUKHERJEE D, AUSTERIA P M, SAMPATH S. Few-layer iron selenophosphate, FePSe3: efficient electrocatalyst toward water splitting and oxygen reduction reactions [J]. ACS Applied Energy Materials, 2018, 1(1): 220–231. doi: 10.1021/acsaem.7b00101
    [21] XU T F, LUO M, SHEN N M, et al. Ternary 2D layered material FePSe3 and near-infrared photodetector [J]. Advanced Electronic Materials, 2021, 7(8): 2100207. doi: 10.1002/aelm.202100207
    [22] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [23] PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
    [24] MEUNIER M. Introduction to materials studio [J]. EPJ Web of Conferences, 2012, 30: 04001. doi: 10.1051/epjconf/20123004001
    [25] HAINES C R S, COAK M J, WILDES A R, et al. Pressure-induced electronic and structural phase evolution in the van der Waals compound FePS3 [J]. Physical Review Letters, 2018, 121(26): 266801. doi: 10.1103/PhysRevLett.121.266801
    [26] BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809
    [27] 李彬峰. 二维材料二硫化钼以及铁磷硫/铁磷硒的材料制备及拉曼表征 [D]. 哈尔滨: 哈尔滨工业大学, 2020: 32−34.

    LI B F. Synthesis and Raman characteristic of two dimensional material molybdenum disulfide and iron phosphorus sulfur (selenium) [D]. Harbin: Harbin Institute of Technology, 2020: 32−34.
    [28] QI Y P, NAUMOV P G, ALI M N, et al. Superconductivity in Weyl semimetal candidate MoTe2 [J]. Nature Communications, 2016, 7: 11038. doi: 10.1038/ncomms11038
    [29] PAN X C, CHEN X L, LIU H M, et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride [J]. Nature Communications, 2015, 6: 7805. doi: 10.1038/ncomms8805
  • 加载中
图(8)
计量
  • 文章访问数:  462
  • HTML全文浏览量:  163
  • PDF下载量:  139
出版历程
  • 收稿日期:  2023-02-17
  • 修回日期:  2023-03-15
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回