热-流-固耦合作用下页岩气储层渗透率的演化机制

张宏学 刘卫群

张宏学, 刘卫群. 热-流-固耦合作用下页岩气储层渗透率的演化机制[J]. 高压物理学报, 2023, 37(3): 035303. doi: 10.11858/gywlxb.20230615
引用本文: 张宏学, 刘卫群. 热-流-固耦合作用下页岩气储层渗透率的演化机制[J]. 高压物理学报, 2023, 37(3): 035303. doi: 10.11858/gywlxb.20230615
ZHANG Hongxue, LIU Weiqun. Evolution Mechanism of Shale Gas Reservoirs Permeability under Thermal-Fluid-Solid Coupling[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035303. doi: 10.11858/gywlxb.20230615
Citation: ZHANG Hongxue, LIU Weiqun. Evolution Mechanism of Shale Gas Reservoirs Permeability under Thermal-Fluid-Solid Coupling[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035303. doi: 10.11858/gywlxb.20230615

热-流-固耦合作用下页岩气储层渗透率的演化机制

doi: 10.11858/gywlxb.20230615
基金项目: 安徽省教育厅科研基金(KJ2020A0329,KJ2016A207)
详细信息
    作者简介:

    张宏学(1982-),男,博士,副教授,主要从事非常规天然气开采中的关键力学问题研究.E-mail:hxzhang@aust.edu.cn

  • 中图分类号: O354.9; TP028.8

Evolution Mechanism of Shale Gas Reservoirs Permeability under Thermal-Fluid-Solid Coupling

  • 摘要: 为了研究热-流-固耦合作用下页岩渗透率的演化机制,考虑热解吸、有效应力和热膨胀对页岩渗透率的影响,提出了页岩的有效应力-渗透率模型,该模型能够分析吸附应变和热膨胀应变对页岩渗透率的影响机制。基于该模型和多孔介质弹性理论,建立了单轴应变条件下页岩气储层的热解吸渗透率模型,该模型能够探讨页岩渗透率随温度和孔隙压力的演化规律。利用室内实验观测的页岩岩样渗透率实验数据,验证了该模型的有效性和准确性。结果表明:(1)热解吸渗透率模型能较好地拟合恒压变温条件下的Marcellus页岩渗透率。(2) 探讨了恒温条件下页岩渗透率随孔压的演化机制,发现恒温条件下渗透率的演化规律呈“U形”,温度越高,渗透率随孔压下降的反弹现象越不明显。(3) 分析了恒压条件下页岩渗透率随温度的演化机制,发现恒压条件下渗透率随温度的演化规律呈“倒U形”,孔隙压力越大,温度对渗透率的影响越小。(4) 分别在恒温和恒压条件下对热解吸渗透率模型进行敏感性分析,发现泊松比越大,渗透率比值梯度越大,孔隙体积模量越大,渗透率比值梯度越小。恒压条件下,当线胀系数大于临界值或朗缪尔体应变小于临界值,渗透率的演化规律不呈现“倒U形”。恒温条件下,当朗缪尔体应变小于临界值时,渗透率的演化规律不呈现“U形”。

     

  • 图  不同温度下热解吸模型解析解与裂隙页岩的实验数据对比

    Figure  1.  Comparison of analytical results of thermal-sorptive model and experimental data offractured shale under different temperatures

    图  不同温度下热解吸模型解析解与完整页岩的实验数据对比

    Figure  2.  Comparison of analytical results of thermal-sorptive model and experimental data of intact shaleunder different temperatures

    图  渗透率随温度和孔压的演化规律

    Figure  3.  Evolution of permeability withtemperature and pore pressure

    图  不同孔压下渗透率随温度的演化规律

    Figure  4.  Evolution of permeability with temperatureunder different pore pressures

    图  不同温度下渗透率随孔压的演化规律

    Figure  5.  Evolution of permeability with porepressure under different temperatures

    图  恒压下泊松比对渗透率的影响

    Figure  6.  Effect of Poisson’s ratio on permeabilityunder constant pore pressure

    图  恒压下孔隙体积模量对渗透率的影响

    Figure  7.  Effect of pore volume modulus onpermeability under constant pore pressure

    图  恒压下线胀系数对渗透率的影响

    Figure  8.  Evolution of coefficient of linear expansionon permeability under constant pore pressure

    图  恒压下Langmuir体应变对渗透率的影响

    Figure  9.  Evolution of Langmuir volume strain onpermeability under constant pore pressure

    图  10  恒温下泊松比对渗透率的影响

    Figure  10.  Effect of Poisson’s ratio on permeabilityunder constant temperature

    图  11  恒温下孔隙体积模量对渗透率的影响

    Figure  11.  Effect of pore volume modulus onpermeability under constant temperature

    图  12  恒温下Langmuir体应变对渗透率的影响

    Figure  12.  Effect of Langmuir volume strain onpermeability under constant temperature

    表  1  裂隙页岩的渗透率比

    Table  1.   Permeability ratio of fractured shale

    Temperature/Kk/k0 of fractured shale
    2951.000
    3031.044
    3131.113
    3231.211
    下载: 导出CSV

    表  2  完整页岩的渗透率比

    Table  2.   Permeability ratio of intact shale

    Temperature/Kk/k0 of intact shaleTemperature/Kk/k0 of intact shale
    307.11.000332.71.095
    308.00.978333.31.045
    313.81.051337.71.058
    321.11.037337.91.061
    321.21.008338.01.084
    325.91.085
    下载: 导出CSV
  • [1] 张金川, 林腊梅, 李玉喜, 等. 页岩气资源评价方法与技术: 概率体积法 [J]. 地学前缘, 2012, 19(2): 184–191.

    ZHANG J C, LIN L M, LI Y X, et al. The method of shale gas assessment: probability volume method [J]. Earth Science Frontiers, 2012, 19(2): 184–191.
    [2] 李敏, 庞雄奇, 罗冰, 等. 生烃潜力法在深层页岩气资源评价中的应用——以四川盆地五峰——龙马溪组优质烃源岩为例 [J]. 中国矿业大学学报, 2021, 50(6): 1096–1107. doi: 10.13247/j.cnki.jcumt.001301

    LI M, PANG X Q, LUO B, et al. Application of hydrocarbon generation potential method to deep shale gas resource evaluation: a case study of high-quality source rocks of the Wufeng-Longmaxi formation in the Sichuan Basin [J]. Journal of China University of Mining & Technology, 2021, 50(6): 1096–1107. doi: 10.13247/j.cnki.jcumt.001301
    [3] GENSTERBLUM Y, MERKEL A, BUSCH A, et al. Gas saturation and CO2 enhancement potential of coalbed methane reservoirs as a function of depth [J]. AAPG Bulletin, 2014, 98(2): 395–420. doi: 10.1306/07021312128
    [4] GENG Y D, LIANG W G, LIU J, et al. Evolution of pore and fracture structure of oil shale under high temperature and high pressure [J]. Energy & Fuels, 2017, 31(10): 10404–10413. doi: 10.1021/acs.energyfuels.7b01071
    [5] 赵瑜, 王超林, 曹汉, 等. 页岩渗流模型及孔压与温度影响机理研究 [J]. 煤炭学报, 2018, 43(6): 1754–1760. doi: 10.13225/j.cnki.jccs.2017.1404

    ZHAO Y, WANG C L, CAO H, et al. Influencing mechanism and modelling study of pore pressure and temperature on shale permeability [J]. Journal of China Coal Society, 2018, 43(6): 1754–1760. doi: 10.13225/j.cnki.jccs.2017.1404
    [6] WANG K, DU F, WANG G D, et al. Investigation of gas pressure and temperature effects on the permeability and steady-state time of Chinese anthracite coal: an experimental study [J]. Journal of Natural Gas Science and Engineering, 2017, 40: 179–188. doi: 10.1016/j.jngse.2017.02.014
    [7] 吴迪, 王挺, 刘雪莹, 等. 页岩渗透特性受热力条件影响的实验研究 [J]. 实验力学, 2020, 35(3): 539–546. doi: 10.7520/1001-4888-18-230

    WU D, WANG T, LIU X Y, et al. Experimental study on the influence of thermal conditions on shale permeability characteristics [J]. Journal of Experimental Mechanics, 2020, 35(3): 539–546. doi: 10.7520/1001-4888-18-230
    [8] 张道川, 周军平, 鲜学福, 等. 多场耦合作用下页岩渗透特性实验研究 [J]. 地下空间与工程学报, 2018, 14(3): 613–621.

    ZHANG D C, ZHOU J P, XIAN X F, et al. Experiment study on the coupling multi-field effect on the dynamic variation of permeability in shale [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(3): 613–621.
    [9] 李波波, 高政, 杨康, 等. 考虑温度、孔隙压力影响的煤岩渗透性演化机制分析 [J]. 煤炭学报, 2020, 45(2): 626–632. doi: 10.13225/j.cnki.jccs.2019.0146

    LI B B, GAO Z, YANG K, et al. Analysis of coal permeability evolution mechanism considering the effect of temperature and pore pressure [J]. Journal of China Coal Society, 2020, 45(2): 626–632. doi: 10.13225/j.cnki.jccs.2019.0146
    [10] WANG G Y, YANG D, ZHAO Y S, et al. Experimental investigation on anisotropic permeability and its relationship with anisotropic thermal cracking of oil shale under high temperature and triaxial stress [J]. Applied Thermal Engineering, 2019, 146: 718–725. doi: 10.1016/j.applthermaleng.2018.10.005
    [11] SCHWARTZ B, ELSWORTH D. Inverted U-shaped permeability enhancement due to thermally induced desorption determined from strain-based analysis of experiments on shale at constant pore pressure [J]. Fuel, 2021, 302: 121178. doi: 10.1016/j.fuel.2021.121178
    [12] TENG T, WANG J G, GAO F, et al. A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization [J]. Journal of Natural Gas Science and Engineering, 2016, 32: 319–333. doi: 10.1016/j.jngse.2016.04.034
    [13] JU Y, WANG J G, WANG H J, et al. CO2 permeability of fractured coal subject to confining pressures and elevated temperature: experiments and modeling [J]. Science China Technological Sciences, 2016, 59(12): 1931–1942. doi: 10.1007/s11431-016-0478-5
    [14] SINHA S, BRAUN E M, DETERMAN M D, et al. Steady-state permeability measurements on intact shale samples at reservoir conditions-effect of stress, temperature, pressure, and type of gas [C]//SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain: SPE, 2016.
    [15] 张宏学, 刘卫群. 非平衡解吸状态下页岩气储层渗透率演化机制 [J]. 岩土力学, 2021, 42(10): 2696–2704. doi: 10.16285/j.rsm.2020.1875

    ZHANG H X, LIU W Q. Permeability evolution mechanism of shale gas reservoir in non-equilibrium desorption state [J]. Rock and Soil Mechanics, 2021, 42(10): 2696–2704. doi: 10.16285/j.rsm.2020.1875
    [16] MCKEE C R, BUMB A C, KOENIG R A. Stress-dependent permeability and porosity of coal and other geologic formations [J]. SPE Formation Evaluation, 1988, 3(1): 81–91. doi: 10.2118/12858-PA
    [17] SEIDLE J P, JEANSONNE M W, ERICKSON D J. Application of matchstick geometry to stress dependent permeability in coals [C]//SPE Rocky Mountain Regional Meeting. Casper, Wyoming: SPE, 1992.
    [18] CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams [J]. AAPG Bulletin, 2005, 89(9): 1181–1202. doi: 10.1306/05110504114
    [19] 张宏学. 页岩储层渗流-应力耦合模型及应用 [D]. 徐州: 中国矿业大学, 2015.

    ZHANG H X. Seepage and stress coupling model for shale reservoir and its application [D]. Xuzhou: China University of Mining and Technology, 2015.
    [20] 张宏学, 刘卫群. 海陆过渡相煤系页岩的渗流特征 [J]. 高压物理学报, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556

    ZHANG H X, LIU W Q. Seepage of marine-terrigenous facies coal measures shale [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556
    [21] LI X, ELSWORTH D. Geomechanics of CO2 enhanced shale gas recovery [J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1607–1619. doi: 10.1016/j.jngse.2014.08.010
    [22] 郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响 [J]. 石油勘探与开发, 2013, 40(4): 481–485. doi: 10.11698/PED.2013.04.14

    GUO W, XIONG W, GAO S S, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas [J]. Petroleum Exploration and Development, 2013, 40(4): 481–485. doi: 10.11698/PED.2013.04.14
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  70
  • PDF下载量:  20
出版历程
  • 收稿日期:  2023-02-14
  • 修回日期:  2023-03-03
  • 录用日期:  2023-03-28
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回