含棉冰材料在低应变率下的抗压性能

聂飞晴 马瑞强 李志强

聂飞晴, 马瑞强, 李志强. 含棉冰材料在低应变率下的抗压性能[J]. 高压物理学报, 2023, 37(3): 034104. doi: 10.11858/gywlxb.20230608
引用本文: 聂飞晴, 马瑞强, 李志强. 含棉冰材料在低应变率下的抗压性能[J]. 高压物理学报, 2023, 37(3): 034104. doi: 10.11858/gywlxb.20230608
NIE Feiqing, MA Ruiqiang, LI Zhiqiang. Compressive Properties of Ice Containing Cotton at Low Strain Rates[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034104. doi: 10.11858/gywlxb.20230608
Citation: NIE Feiqing, MA Ruiqiang, LI Zhiqiang. Compressive Properties of Ice Containing Cotton at Low Strain Rates[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034104. doi: 10.11858/gywlxb.20230608

含棉冰材料在低应变率下的抗压性能

doi: 10.11858/gywlxb.20230608
基金项目: 山西省关键核心技术和共性技术研发攻关专项(2020XXX017)
详细信息
    作者简介:

    聂飞晴(1997-),女,硕士研究生,主要从事冲击力学研究. E-mail:niefeiqing@163.com

    通讯作者:

    李志强(1973-),男,博士,教授,主要从事爆炸冲击与计算力学研究. E-mail:lizhiqiang@tyut.edu.cn

  • 中图分类号: O346.4

Compressive Properties of Ice Containing Cotton at Low Strain Rates

  • 摘要: 航空飞行器在飞行过程中不可避免地受到冰雹冲击的威胁,严重危害航空器的飞行安全。目前,天然冰材料的冲击特性尚不明确,为此,依据ASTM F320-21标准《航空与航天透明外壳冰撞测试》,研究了不同应变率下天然冰材料的力学性能。天然冰相对于人工冰雹具有密度低、强度高的特点,结合冰雹制备标准,制备了含棉纤维质量分数为0、3%、6%、12%的冰柱试样。利用万能试验机对冰试样进行应变率分别为10−4、10−3、10−2 s−1的压缩实验,分析了棉纤维质量分数与应变率对冰试样压缩力学性能的影响,以及破坏形式与临界应变能密度的关系。结果表明:透明冰在应变率约为10−3 s−1时由韧性向脆性转化,且添加棉纤维有助于提高冰的压缩屈服强度,在压缩过程中表现出“裂而不碎”的现象;在准静态压缩下,两种冰模型破坏时转化为裂纹表面能所需的能量均比转化为塑性能所需的能量更少。

     

  • 图  冰柱制备模具

    Figure  1.  Preparation of icicle moulds

    图  医用脱脂棉纤维

    Figure  2.  Medical skimmed cotton fiber

    图  不同棉纤维质量分数的含棉冰试件

    Figure  3.  Ice specimens with different mass fractions of cotton

    图  万能试验机

    Figure  4.  Universal testing machine

    图  棉纤维质量分数不同的冰柱在不同应变率下的应力-应变曲线

    Figure  5.  Stress-strain curves of ice columns with different cotton fiber mass fractions at different strain rates

    图  屈服强度随棉纤维质量分数的变化曲线

    Figure  6.  Variation curve of compression strength with cotton content

    图  应变率为10−4 s−1时透明冰的应力-应变曲线

    Figure  7.  Stress-strain curve of transparent ice at a strain rate of 10−4 s−1

    图  应变率为10−4 s−1时透明冰压缩过程中6个时刻的冰柱压缩状态

    Figure  8.  Transparent icicle states at 6 instances for a compression strain rate of 10−4 s−1

    图  应变率为10−2 s−1时不同棉纤维质量分数的含棉冰试件压缩后的形态

    Figure  9.  Morphology of specimens containing cotton fiber with different mass fractions

    图  10  棉纤维质量分数为(a) 0、 (b) 3%、 (c) 6%、 (d) 12%时不同应变率下冰柱的应力-应变曲线

    Figure  10.  Stress-strain curves of ice columns containing cotton fibers with mass fractions of (a) 0, (b) 3%, (c) 6%, and (d) 12% at different strain rates

    图  11  棉纤维质量分数不同的冰柱的临界应变能

    Figure  11.  Critical strain energies of icicles with different cotton mass fractions

    表  1  ASTM F320-21标准冰雹参数

    Table  1.   Standardization of hail in ASTM F320-21

    Hail diameter/mmHail mass/gCotton fiber mass fraction/%Cotton fiber mass/gError/%Temperature/℃
    131.0120.14±30−18
    258.2121.00 ±30−18
    5066.4128.00 ±30−18
    下载: 导出CSV

    表  2  人工制备圆柱冰尺寸

    Table  2.   Parameters of artificial icicles

    Icicle diameter/mmIcicle height/mmIcicle mass/gCotton fiber mass fraction/%Error/%Temperature/℃
    1882.00, 3, 6, 12±30−18
    1671.40, 3, 6, 12 ±30−18
    下载: 导出CSV

    表  3  试件在不同应变率下的压缩屈服强度

    Table  3.   Compressive yield strength of specimens at different strain rates

    Cotton fiber mass fraction/%Strain rates/s−1Compressive yield strength/MPaChange/%
    010−43.744
    10−31.563−58.20
    10−20.770−50.75
    310−48.920
    10−312.15036.21
    10−212.4952.84
    610−48.920
    10−314.05057.51
    10−215.4259.79
    1210−411.200
    10−313.67322.08
    10−221.67058.49
    下载: 导出CSV

    表  4  试件尺寸及屈服强度

    Table  4.   Dimensions and compression strengths of specimens

    Strain rates/s−1Cotton fiber mass fraction/%Specimen sizeMean yield strength/MPa
    Diameter/mmHeight/mm
    10−401674.47
    01883.74
    31678.43
    31888.62
    61679.70
    61888.92
    1216712.75
    1218811.53
    10−301671.20
    01881.56
    316712.24
    318812.15
    616715.40
    618814.05
    1216716.80
    1218813.80
    10−201670.76
    01880.77
    316713.79
    318812.50
    616720.00
    618815.43
    1216720.10
    1218821.67
    下载: 导出CSV
  • [1] 韩登安, 徐丹, 叶仁传, 等. 冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析 [J]. 高压物理学报, 2022, 36(4): 044205.

    HAN D A, XU D, YE R C, et al. Analysis on damage of double-helicoidal carbon fiber reinforced polymer bionic structure inspired by coelacanth scales under hail load [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044205.
    [2] 王计真. 复合材料层合板抗冰雹冲击性能研究 [J]. 兵工学报, 2017, 38(Suppl 1): 89–95.

    WANG J Z. Research on anti-hailstone impact behavior of laminated composite panel [J]. Acta Armamentarii, 2017, 38(Suppl 1): 89–95.
    [3] JONES S J. High strain-rate compression tests on ice [J]. The Journal of Physical Chemistry B, 1997, 101(32): 6099–6101. doi: 10.1021/jp963162j
    [4] SHAZLY M, PRAKASH V, LERCH B A. High strain-rate behavior of ice under uniaxial compression [J]. International Journal of Solids and Structures, 2009, 46(6): 1499–1515. doi: 10.1016/j.ijsolstr.2008.11.020
    [5] ALLEN J T, GIAMMANCO I M, KUMJIAN M R, et al. Understanding hail in the earth system [J]. Reviews of Geophysics, 2020, 58(1): e2019RG000665.
    [6] SWIFT J M. Simulated hail ice mechanical properties and failure mechanism at quasi-static strain rates [D]. Seattle: University of Washington, 2013.
    [7] HAYNES F D. Effect of temperature on the strength of snow-ice: CRREL report 78−27 [R]. Hanover: Cold Regions Research and Engineering Laboratory, 1978.
    [8] SCHULSON E M. The structure and mechanical behavior of ice [J]. JOM, 1999, 51(2): 21–27. doi: 10.1007/s11837-999-0206-4
    [9] DEMPSEY J P, DEFRANCO S J, ADAMSON R M, et al. Scale effects on the in-situ tensile strength and fracture of ice part Ⅰ: large grained freshwater ice at Spray Lakes Reservoir, Alberta [J]. International Journal of Fracture, 1999, 95(1): 325–345.
    [10] COLE D M. The microstructure of ice and its influence on mechanical properties [J]. Engineering Fracture Mechanics, 2001, 68(17/18): 1797–1822.
    [11] MELLOR M, COLE D M. Deformation and failure of ice under constant stress or constant strain-rate [J]. Cold Regions Science and Technology, 1982, 5(3): 201–219. doi: 10.1016/0165-232X(82)90015-5
    [12] KUEHN G A, SCHULSON E M, JONES D E, et al. The compressive strength of ice cubes of different sizes [J]. Journal of Offshore Mechanics and Arctic Engineering, 1993, 115(2): 142–148. doi: 10.1115/1.2920104
    [13] SCHULSON E M, DUVAL P. Brittle failure of ice under tension [M]//SCHULSON E M, DUVAL P. Creep and Fracture of Ice. Cambridge: Cambridge University Press, 2009: 212−235.
    [14] SCHULSON E M. Brittle failure of ice [J]. Engineering Fracture Mechanics, 2001, 68(17/18): 1839–1887.
    [15] KIM H, KEUNE J N. Compressive strength of ice at impact strain rates [J]. Journal of Materials Science, 2007, 42(8): 2802–2806. doi: 10.1007/s10853-006-1376-x
    [16] 宋振华. 冰载荷作用下碳纤维复合材料桁条加筋曲面板的冲击动力响应研究 [D]. 广州: 暨南大学, 2014.

    SONG Z H. The dynamic response of stringer-stiffened curved composite panels under the hail ice impact [D]. Guangzhou: Jinan University, 2014.
    [17] ASTM. ASTM F320−21 standard test method for hail impact resistance of aerospace transparent enclosures [S]. West Conshohocken: ASTM, 2021.
    [18] 张丽芬, 葛鑫, 刘振侠. 人工制备冰雹的力学性能试验研究 [J]. 航空学报, 2021, 42(2): 224255. doi: 10.7527/S1000-6893.2020.24255

    ZAHNG L F, GE X, LIU Z X. Experimental study on mechanical properties of artificial hail [J]. Acta Aeronauticaet Astronautica Sinica, 2021, 42(2): 224255. doi: 10.7527/S1000-6893.2020.24255
    [19] 冯晓伟, 冯高鹏, 方辉. 不同应变率下冰破坏特性的试验研究 [J]. 应用力学学报, 2016, 33(2): 223–228.

    FENG X W, FENG G P, FANG H. Experimental investigation on compressive failure behaviour of fresh-water ice at different compressive rates [J]. Chinese Journal of Applied Mechanics, 2016, 33(2): 223–228.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  84
  • PDF下载量:  23
出版历程
  • 收稿日期:  2023-02-01
  • 修回日期:  2023-02-28
  • 录用日期:  2023-02-28
  • 网络出版日期:  2023-06-21
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回