压力诱导CsCu2I3不可逆非晶化和金属化

张鸿生 姚先祥 吕心邓 宋昊 黄艳萍 方裕强 崔田

张鸿生, 姚先祥, 吕心邓, 宋昊, 黄艳萍, 方裕强, 崔田. 压力诱导CsCu2I3不可逆非晶化和金属化[J]. 高压物理学报, 2023, 37(1): 011101. doi: 10.11858/gywlxb.20230607
引用本文: 张鸿生, 姚先祥, 吕心邓, 宋昊, 黄艳萍, 方裕强, 崔田. 压力诱导CsCu2I3不可逆非晶化和金属化[J]. 高压物理学报, 2023, 37(1): 011101. doi: 10.11858/gywlxb.20230607
ZHANG Hongsheng, YAO Xianxiang, LYU Xindeng, SONG Hao, HUANG Yanping, FANG Yuqiang, CUI Tian. Pressure-Induced Irreversible Amorphization and Metallization of CsCu2I3[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 011101. doi: 10.11858/gywlxb.20230607
Citation: ZHANG Hongsheng, YAO Xianxiang, LYU Xindeng, SONG Hao, HUANG Yanping, FANG Yuqiang, CUI Tian. Pressure-Induced Irreversible Amorphization and Metallization of CsCu2I3[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 011101. doi: 10.11858/gywlxb.20230607

压力诱导CsCu2I3不可逆非晶化和金属化

doi: 10.11858/gywlxb.20230607
基金项目: 国家自然科学基金(52072188);浙江省科技创新团队项目(2021R01004);宁波市科技计划项目(2021J121)
详细信息
    作者简介:

    张鸿生(1995—),男,硕士研究生,主要从事卤化物钙钛矿的高压物性研究.E-mail:2011086196@nbu.edu.cn

    通讯作者:

    黄艳萍(1987—),女,博士,副教授,主要从事高压下凝聚态物质结构与性质研究.E-mail:huangyanping@nbu.edu.cn

    方裕强(1993—),男,博士,助理研究员,主要从事二维层状材料研究.E-mail:fangyuqiang@mail.sic.ac.cn

    崔 田(1964—),男,博士,教授,主要从事高压等极端条件下新型功能材料设计与合成研究.E-mail:cuitian@nbu.edu.cn

  • 中图分类号: O521.2

Pressure-Induced Irreversible Amorphization and Metallization of CsCu2I3

  • 摘要: 近年来,压力作用下卤化物钙钛矿的结构和性质引起了科学家们的极大兴趣。然而,对于高压下钙钛矿非晶相的潜在性质和应用仍缺乏深入系统的研究。利用金刚石对顶砧,结合原位高压同步辐射X射线衍射、原位高压拉曼光谱、高压变温电学测量技术,对准一维卤化物钙钛矿CsCu2I3在高压下的非晶化行为进行了系统的研究。结果表明:CsCu2I3在35.9 GPa以上开始出现可逆的压致非晶化,形成低密度的非晶态Ⅰ相;在更高压力下,发生由低密度到高密度的非晶转变,形成非晶态Ⅱ相,并可以截获至常压条件。进一步的电学实验表明,136.0 GPa时,CsCu2I3发生了由绝缘体向金属相的转变,对高压下金属相的非晶态进行卸压电阻测试,发现其金属特性至少可稳定至90.0 GPa。这些结果为进一步探索非晶钙钛矿的潜在性质和应用提供了重要的科学依据。

     

  • 图  (a) CsCu2I3的SEM图像,(b) 常压下CsCu2I3 的XRD数据与PDF标准卡片对比

    Figure  1.  (a) SEM images of CsCu2I3, (b) XRD data of CsCu2I3 under ambient pressure compared with PDF card

    图  CsCu2I3在常压下的晶体结构(a)、0.2 GPa时衍射谱的Rietveld精修结果 (b) 以及XRD谱随压力的变化(c)

    Figure  2.  (a) Crystal structure of CsCu2I3 at ambient pressure, (b) rietveld refinement result of CsCu2I3 XRD pattern at 0.2 GPa, and (c) XRD patterns of CsCu2I3 as a function of pressure

    图  CsCu2I3的拉曼光谱随压力变化情况(a) 以及拉曼频移随压力的变化情况 (b)

    Figure  3.  (a) Variation of Raman spectra of CsCu2I3 versus pressure and (b) Raman shift versus pressure

    图  不同压力下CsCu2I3的XRD衍射环 (a) 和XRD谱 (b)

    Figure  4.  XRD rings (a) and patterns (b) of CsCu2I3 under different pressures

    图  CsCu2I3的室温电阻随压力的变化情况(a),温度-压力-电阻三维相图(b)以及电阻随温度的变化关系(c)

    Figure  5.  (a) Variation of room temperature resistance versus pressure, (b) temperature-pressure-resistance three-dimensional phase diagram, and (c) pressure dependence of resistance as a function temperature for CsCu2I3

    图  CsCu2I3在卸压过程中的电阻与温度的变化关系

    Figure  6.  Temperature dependence of CsCu2I3 resistance during decompression

  • [1] WANG R, HUANG T Y, XUE J J, et al. Prospects for metal halide perovskite-based tandem solar cells [J]. Nature Photonics, 2021, 15(6): 411–425. doi: 10.1038/s41566-021-00809-8
    [2] TONG J H, JIANG Q, ZHANG F, et al. Wide-bandgap metal halide perovskites for tandem solar cells [J]. ACS Energy Letters, 2020, 6(1): 232–248. doi: 10.1021/acsenergylett.0c02105
    [3] SHAN Q S, SONG J Z, ZOU Y S, et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization [J]. Small, 2017, 13(45): 1701770. doi: 10.1002/smll.201701770
    [4] ZHAO Z R, GU F D, RAO H X, et al. Metal halide perovskite materials for solar cells with long-term stability [J]. Advanced Energy Materials, 2019, 9(3): 1802671. doi: 10.1002/aenm.201802671
    [5] YUSOFF A R B M, NAZEERUDDIN M K. Low-dimensional perovskites: from synthesis to stability in perovskite solar cells [J]. Advanced Energy Materials, 2018, 8(26): 1702073. doi: 10.1002/aenm.201702073
    [6] CAMPBELL M G, POWERS D C, RAYNAUD J, et al. Synthesis and structure of solution-stable one-dimensional palladium wires [J]. Nature Chemistry, 2011, 3(12): 949–953. doi: 10.1038/nchem.1197
    [7] LI X L, LV H F, DAI J, et al. Half-metallicity in one-dimensional metal trihydride molecular nanowires [J]. Journal of the American Chemical Society, 2017, 139(18): 6290–6293. doi: 10.1021/jacs.7b01369
    [8] LIN H R, ZHOU C K, TIAN Y, et al. Low-dimensional organometal halide perovskites [J]. ACS Energy Letters, 2018, 3(1): 54–62. doi: 10.1021/acsenergylett.7b00926
    [9] ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids [J]. Materials Science and Engineering R, 2019, 137: 38–65. doi: 10.1016/j.mser.2018.12.001
    [10] SAIDAMINOV M I, MOHAMMED O F, BAKR O M. Low-dimensional-networked metal halide perovskites: the next big thing [J]. ACS Energy Letters, 2017, 2(4): 889–896. doi: 10.1021/acsenergylett.6b00705
    [11] ZHANG L, WANG K, LIN Y, et al. Pressure effects on the electronic and optical properties in low-dimensional metal halide perovskites [J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4693–4701. doi: 10.1021/acs.jpclett.0c01014
    [12] YIN T T, LIU B, YAN J X, et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes [J]. Journal of the American Chemical Society, 2019, 141(3): 1235–1241. doi: 10.1021/jacs.8b07765
    [13] YUAN Y, LIU X F, MA X D, et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure [J]. Advanced Science, 2019, 6(15): 1900240. doi: 10.1002/advs.201900240
    [14] GUO S H, BU K J, LI J W, et al. Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features [J]. Journal of the American Chemical Society, 2021, 143(6): 2545–2551. doi: 10.1021/jacs.0c11730
    [15] MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nature Communications, 2018, 9(1): 4506. doi: 10.1038/s41467-018-06840-8
    [16] SHI Y, MA Z W, ZHAO D L, et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites [J]. Journal of the American Chemical Society, 2019, 141(16): 6504–6508. doi: 10.1021/jacs.9b02568
    [17] LÜ X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization [J]. Advanced Materials, 2016, 28(39): 8663–8668. doi: 10.1002/adma.201600771
    [18] OU T J, YAN J J, XIAO C H, et al. Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites [J]. Nanoscale, 2016, 8(22): 11426–11431. doi: 10.1039/C5NR07842C
    [19] WANG L R, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide [J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556–2562. doi: 10.1021/acs.jpclett.6b00999
    [20] ZHANG L, LIU C M, WANG L R, et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9 [J]. Angewandte Chemie International Edition, 2018, 57(35): 11213–11217. doi: 10.1002/anie.201804310
    [21] ZHANG L, LIU C M, LIN Y, et al. Tuning optical and electronic properties in low-toxicity organic-inorganic hybrid (CH3NH3)3Bi2I9 under high pressure [J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1676–1683. doi: 10.1021/acs.jpclett.9b00595
    [22] FANG Y Y, SHAO T Y, ZHANG L, et al. Harvesting high-quality white-light emitting and remarkable emission enhancement in one-dimensional halide perovskites upon compression [J]. Journal of the American Chemical Society Au, 2021, 1(4): 459–466. doi: 10.1021/JACSAU.1C00024
    [23] ZHOU W X, CHENG Y, CHEN K Q, et al. Thermal conductivity of amorphous materials [J]. Advanced Functional Materials, 2020, 30(8): 1903829. doi: 10.1002/adfm.201903829
    [24] HE S Y, LI Y B, LIU L, et al. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance [J]. Science Advances, 2020, 6(15): eaaz8423. doi: 10.1126/sciadv.aaz8423
    [25] ZHAO K P, EIKELAND E, HE D S, et al. Thermoelectric materials with crystal-amorphicity duality induced by large atomic size mismatch [J]. Joule, 2021, 5(5): 1183–1195. doi: 10.1016/j.joule.2021.03.012
    [26] MO X M, LI T, HUANG F C, et al. Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection [J]. Nano Energy, 2021, 81: 105570. doi: 10.1016/j.nanoen.2020.105570
    [27] LI Z Q, LI Z L, SHI Z F, et al. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1D electronic structure [J]. Advanced Functional Materials, 2020, 30(28): 2002634. doi: 10.1002/adfm.202002634
    [28] DU M H. Emission trend of multiple self-trapped excitons in luminescent 1D copper halides [J]. ACS Energy Letters, 2020, 5(2): 464–469. doi: 10.1021/acsenergylett.9b02688
    [29] XING Z S, ZHOU Z C, ZHONG G H, et al. Barrierless exciton self-trapping and emission mechanism in low-dimensional copper halides [J]. Advanced Functional Materials, 2022, 32(46): 2207638. doi: 10.1002/adfm.202207638
    [30] LI Q, CHEN Z W, YANG B, et al. Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units [J]. Journal of the American Chemical Society, 2020, 142(4): 1786–1791. doi: 10.1021/jacs.9b13419
    [31] LI R P, WANG R, YUAN Y, et al. Defect origin of emission in CsCu2I3 and pressure-induced anomalous enhancement [J]. The Journal of Physical Chemistry Letters, 2021, 12(1): 317–323. doi: 10.1021/acs.jpclett.0c03432
    [32] LI Y, SHI Z F, WANG L T, et al. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors [J]. Materials Horizons, 2020, 7(6): 1613–1622. doi: 10.1039/D0MH00250J
    [33] CHERVIN J C, CANNY B, MANCINELLI M. Ruby-spheres as pressure gauge for optically transparent high pressure cells [J]. High Pressure Research, 2001, 21(6): 305–314. doi: 10.1080/08957950108202589
    [34] PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
    [35] MEUNIER M, ROBERTSON S. Materials studio 20th anniversary [J]. Molecular Simulation, 2021, 47(7): 537–539. doi: 10.1080/08927022.2021.1892093
    [36] JAFFE A, LIN Y, BEAVERS C M, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties [J]. ACS Central Science, 2016, 2(4): 201–209. doi: 10.1021/acscentsci.6b00055
    [37] MATHEU R, KE F, BREIDENBACH A, et al. Charge reservoirs in an expanded halide perovskite analog: enhancing high-pressure conductivity through redox-active molecules [J]. Angewandte Chemie International Edition, 2022, 61(25): e202202911. doi: 10.1002/anie.202202911
  • 加载中
图(6)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  167
  • PDF下载量:  105
出版历程
  • 收稿日期:  2023-02-01
  • 修回日期:  2023-02-05
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回