混凝土界面过渡区对裂纹扩展过程的影响

贾世旭 赵婷婷 吴佩 李志强 王志勇

贾世旭, 赵婷婷, 吴佩, 李志强, 王志勇. 混凝土界面过渡区对裂纹扩展过程的影响[J]. 高压物理学报, 2023, 37(4): 044207. doi: 10.11858/gywlxb.20230606
引用本文: 贾世旭, 赵婷婷, 吴佩, 李志强, 王志勇. 混凝土界面过渡区对裂纹扩展过程的影响[J]. 高压物理学报, 2023, 37(4): 044207. doi: 10.11858/gywlxb.20230606
JIA Shixu, ZHAO Tingting, WU Pei, LI Zhiqiang, WANG Zhiyong. Influence of Interfacial Transition Zone on Crack Propagation Process in Concrete[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044207. doi: 10.11858/gywlxb.20230606
Citation: JIA Shixu, ZHAO Tingting, WU Pei, LI Zhiqiang, WANG Zhiyong. Influence of Interfacial Transition Zone on Crack Propagation Process in Concrete[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044207. doi: 10.11858/gywlxb.20230606

混凝土界面过渡区对裂纹扩展过程的影响

doi: 10.11858/gywlxb.20230606
基金项目: 国家自然科学基金(12102294,12072217);山西省回国留学人员科研资助项目(2022-067);山西省基础研究计划青年科学研究项目(2021032124158);爆炸科学与技术国家重点实验室(北京理工大学)开放基金(KFJJ22-14M);宁波大学冲击与安全工程教育部重点实验室开放基金(CJ20202109)
详细信息
    作者简介:

    贾世旭(1997-),男,硕士研究生,主要从事混凝土离散元建模研究. E-mail:jiashixu2022@163.com

    通讯作者:

    赵婷婷(1989-),女,博士,副教授,主要从事离散元算法研究. E-mail:zhaotingting@tyut.edu.cn

  • 中图分类号: O346.1; TU528

Influence of Interfacial Transition Zone on Crack Propagation Process in Concrete

  • 摘要: 混凝土是由水泥砂浆、粗骨料和界面过渡区(interfacial transition zone, ITZ)组成的非均质复合材料。ITZ作为混凝土内部的最薄弱相,对混凝土的宏观断裂有重要影响。基于PFC 2D的FISH语言,建立了能反映混凝土骨料、水泥砂浆和ITZ等复杂细观结构的离散元模型,并探讨了在单轴压缩载荷下ITZ强度分布和强度值对混凝土裂纹扩展过程的影响。数值模拟结果表明:混凝土裂纹遵循从中心向加载端扩展的趋势,超过80%的裂纹出现在峰值应力后的软化阶段;ITZ强度分布对混凝土裂纹扩展过程影响较弱,当ITZ强度呈现U形分布时,混凝土中裂纹数量较多;ITZ强度值对混凝土断裂程度及最终断裂形式影响显著,当ITZ的最小黏结强度与砂浆黏结强度比p<0.5时,混凝土强度显著降低,且裂纹围绕混凝土模型中心分散扩展形成网状宏观裂纹,导致试件发生散碎破坏,当p>0.6时,裂纹从混凝土试样中心向加载端集中扩展形成宏观贯通裂纹,导致试件发生块状破坏。

     

  • 图  随机骨料的分布

    Figure  1.  Distribution of random aggregates

    图  ITZ细观结构示意图

    Figure  2.  Schematic diagram of ITZ meso structure

    图  3种ITZ强度分布方式

    Figure  3.  Three strength distribution modes of ITZ

    图  PFC单轴压缩混凝土的数值模型

    Figure  4.  Numerical model of concrete under uniaxial compression in PFC

    图  平行黏结模型的基本结构

    Figure  5.  Basic structure of parallel bond model

    图  单轴压缩实验[19]与数值模拟的应力-应变曲线对比

    Figure  6.  Comparison of stress-strain curves between uniaxial compression experimental[19] and numerical results

    图  破坏块体和裂纹分布的数值模拟结果

    Figure  7.  Numerical simulation results of fragments and crack distribution

    图  不同ITZ强度分布下的应力-应变曲线对比

    Figure  8.  Comparison among stress-strain curves for different ITZ strength distributions

    图  不同ITZ强度分布下的裂纹数量

    Figure  9.  Comparison among the number of cracks for different ITZ strength distributions

    图  10  不同ITZ强度分布下的裂纹形态

    Figure  10.  Crack propagation morphology for different ITZ strength distributions

    图  11  不同ITZ强度值下的应力-应变曲线

    Figure  11.  Stress-strain curves for different ITZ strength values

    图  12  不同ITZ强度值下的裂纹数量对比

    Figure  12.  Comparison among the number of cracks for different ITZ strength values

    图  13  不同ITZ强度值下的裂纹形态

    Figure  13.  Crack propagation morphology for different ITZ strength values

    表  1  不同ITZ强度分布下ITZ与砂浆的强度比

    Table  1.   Strength ratio of ITZ to mortar for different ITZ strength distributions

    Distribution modeITZ layerσITZ/σmortar Distribution modeITZ layerσITZ/σmortar
    Incremental distributionITZ 10.80 Average distributionITZ 10.80
    ITZ 20.86ITZ 20.80
    ITZ 30.90ITZ 30.80
    ITZ 40.94ITZ 40.80
    ITZ 50.98ITZ 50.80
    U shape distributionITZ 10.90
    ITZ 20.85
    ITZ 30.80
    ITZ 40.90
    ITZ 50.98
    下载: 导出CSV

    表  2  5组模型中ITZ与砂浆的强度比

    Table  2.   Strength ratio of ITZ to mortar for 5 groups of models

    ModelpITZ layerσITZ/σmortar
    10.40ITZ 10.40
    ITZ 20.65
    ITZ 30.80
    ITZ 40.90
    ITZ 50.98
    20.50ITZ 10.50
    ITZ 20.70
    ITZ 30.83
    ITZ 40.91
    ITZ 50.98
    30.60ITZ 10.60
    ITZ 20.75
    ITZ 30.85
    ITZ 40.92
    ITZ 50.98
    40.70ITZ 10.70
    ITZ 20.80
    ITZ 30.88
    ITZ 40.93
    ITZ 50.98
    50.80ITZ 10.80
    ITZ 20.86
    ITZ 30.90
    ITZ 40.94
    ITZ 50.98
    下载: 导出CSV

    表  3  接触细观参数

    Table  3.   Meso-parameters of contacts

    MaterialEc/GPak*μλσt/MPaC/MPaφ/(°)
    Aggregate1001.50.311000100045
    Mortar101.50.31202045
    下载: 导出CSV
  • [1] 陈惠苏, 孙伟, PIET S. 水泥基复合材料集料与浆体界面研究综述(Ⅱ): 界面微观结构的形成、劣化机理及其影响因素 [J]. 硅酸盐学报, 2004, 32(1): 70–79. doi: 10.3321/j.issn:0454-5648.2004.01.013

    CHEN H S, SUN W, PIET S. Interfacial transition zone between aggregate and paste in cementitious composites (Ⅱ): mechanism of formation and degradation of interfacial transition zone microstructure, and its influence factors [J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 70–79. doi: 10.3321/j.issn:0454-5648.2004.01.013
    [2] DIAMOND S, HUANG J D. The ITZ in concrete–a different view based on image analysis and SEM observations [J]. Cement and Concrete Composites, 2001, 23(2/3): 179–188. doi: 10.1016/S0958-9465(00)00065-2
    [3] OLLIVIER J P, MASO J C, BOURDETTE B. Interfacial transition zone in concrete [J]. Advanced Cement Based Materials, 1995, 2(1): 30–38. doi: 10.1016/1065-7355(95)90037-3
    [4] 徐晶, 王先志. 纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型 [J]. 硅酸盐学报, 2018, 46(8): 1053–1058. doi: 10.14062/j.issn.0454-5648.2018.08.02

    XU J, WANG X Z. Effect of nano-silica modification on interfacial transition zone in concrete and its multiscale modelling [J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1053–1058. doi: 10.14062/j.issn.0454-5648.2018.08.02
    [5] LEE K M, PARK J H. A numerical model for elastic modulus of concrete considering interfacial transition zone [J]. Cement and Concrete Research, 2008, 38(3): 396–402. doi: 10.1016/j.cemconres.2007.09.019
    [6] 王力晓, 陈启东, 刘鑫. 超声动态载荷下混凝土过渡区域的损伤演化 [J]. 高压物理学报, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833

    WANG L X, CHEN Q D, LIU X. Damage evolution in concrete interfacial transition zone with ultrasonic dynamic load [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833
    [7] MALEKI M, RASOOLAN I, KHAJEHDEZFULY A, et al. On the effect of ITZ thickness in meso-scale models of concrete [J]. Construction and Building Materials, 2020, 258: 119639. doi: 10.1016/j.conbuildmat.2020.119639
    [8] NITKA M, TEJCHMAN J. Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates [J]. Engineering Fracture Mechanics, 2020, 231: 107029. doi: 10.1016/j.engfracmech.2020.107029
    [9] 杜修力, 金浏. 非均质混凝土材料破坏的三维细观数值模拟 [J]. 工程力学, 2013, 30(2): 82–88. doi: 10.6052/j.issn.1000-4750.2011.07.0445

    DU X L, JIN L. Numerical simulation of three-dimensional meso-mechanical model for damage process of heterogeneous concrete [J]. Engineering Mechanics, 2013, 30(2): 82–88. doi: 10.6052/j.issn.1000-4750.2011.07.0445
    [10] 朱万成, 赵启林, 唐春安, 等. 混凝土断裂过程的力学模型与数值模拟 [J]. 力学进展, 2002, 32(4): 579–598. doi: 10.3321/j.issn:1000-0992.2002.04.012

    ZHU W C, ZHAO Q L, TANG C A, et al. Mechanical model and numerical simulation of fracture process of concrete [J]. Advances in Mechanics, 2002, 32(4): 579–598. doi: 10.3321/j.issn:1000-0992.2002.04.012
    [11] CHIAIA B, VERVUURT A, VAN MIER J G M. Lattice model evaluation of progressive failure in disordered particle composites [J]. Engineering Fracture Mechanics, 1997, 57(2/3): 301–318. doi: 10.1016/S0013-7944(97)00011-8
    [12] 刘光廷, 王宗敏. 用随机骨料模型数值模拟混凝土材料的断裂 [J]. 清华大学学报(自然科学版), 1996, 36(1): 84–89. doi: 10.16511/j.cnki.qhdxxb.1996.01.014

    LIU G T, WANG Z M. Numerical simulation study of fracture of concrete materials using random aggregate model [J]. Journal of Tsinghua University (Science and Technology), 1996, 36(1): 84–89. doi: 10.16511/j.cnki.qhdxxb.1996.01.014
    [13] YU Y, ZHENG Y, ZHAO X Y. Mesoscale modeling of recycled aggregate concrete under uniaxial compression and tension using discrete element method [J]. Construction and Building Materials, 2021, 268: 121116. doi: 10.1016/j.conbuildmat.2020.121116
    [14] 刘建南, 张昌锁. 过渡区界面对混凝土劈裂性能影响的试验与数值模拟 [J]. 科学技术与工程, 2018, 18(18): 269–274. doi: 10.3969/j.issn.1671-1815.2018.18.044

    LIU J N, ZHANG C S. Experiment and numerical simulation on the influence of interfacial transition zone on concrete splitting performance [J]. Science Technology and Engineering, 2018, 18(18): 269–274. doi: 10.3969/j.issn.1671-1815.2018.18.044
    [15] 施惠生, 居正慧, 郭晓潞, 等. ITZ形成机制及其对混凝土力学性能与传输性能的影响 [J]. 建材技术与应用, 2014(6): 11–18. doi: 10.3969/j.issn.1009-9441.2014.06.006

    SHI H S, JU Z H, GUO X L, et al. ITZ formation mechanism and its influence on mechanical and transportation performance of concrete [J]. Research and Application of Building Materials, 2014(6): 11–18. doi: 10.3969/j.issn.1009-9441.2014.06.006
    [16] LYU K, GARBOCZI E J, SHE W, et al. The effect of rough vs. smooth aggregate surfaces on the characteristics of the interfacial transition zone [J]. Cement and Concrete Composites, 2019, 99: 49–61. doi: 10.1016/j.cemconcomp.2019.03.001
    [17] HE J T, LEI D, DI LUZIO G, et al. Mechanical properties measurement and micro-damage characterization of ITZ in concrete by SEM-DIC method [J]. Optics and Lasers in Engineering, 2022, 155: 107064. doi: 10.1016/j.optlaseng.2022.107064
    [18] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
    [19] REN H L, SONG S Z, NING J G. Damage evolution of concrete under tensile load using discrete element modeling [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103622. doi: 10.1016/j.tafmec.2022.103622
    [20] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究 [J]. 建筑结构学报, 1982, 3(1): 1–12. doi: 10.14006/j.jz.jgxb.1982.01.001

    GUO Z H, ZHANG X Q, ZHANG D C, et al. Experimental investigation of the complete stress-strain curve of concrete [J]. Journal of Building Structures, 1982, 3(1): 1–12. doi: 10.14006/j.jz.jgxb.1982.01.001
    [21] VARGAS P, RESTREPO-BAENA O, TOBÓN J I. Microstructural analysis of interfacial transition zone (ITZ) and its impact on the compressive strength of lightweight concretes [J]. Construction and Building Materials, 2017, 137: 381–389. doi: 10.1016/j.conbuildmat.2017.01.101
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  121
  • PDF下载量:  36
出版历程
  • 收稿日期:  2023-02-01
  • 修回日期:  2023-03-17
  • 录用日期:  2023-03-30
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回