In-Plane Impact Response of Multi-Order Hierarchical Gradient Honeycomb Structure
-
摘要: 为改善蜂窝结构共面的力学性能,基于传统六边形蜂窝结构,建立了六边形层级蜂窝结构,并利用层级蜂窝代替传统六边形蜂窝部分胞元层,复合成一种新型多阶式层级梯度蜂窝结构。利用显式动力学有限元方法研究了层级梯度蜂窝的共面在不同冲击速度作用下的冲击响应特性和能量吸收能力。研究结果表明:层级梯度蜂窝的变形模式与塑性坍塌强度和冲击速度有关;层级梯度蜂窝冲击端和固定端在不同冲击速度作用下的名义应力-应变曲线均与其变形模式有关;不同的复合方式会导致层级梯度蜂窝具有不同的平台应力和比吸能,且在高速冲击时其平台应力比传统六边形蜂窝提高45.4%~63.8%,能量吸收提升10.8%~34.1%。相对密度会影响层级梯度蜂窝的能量吸收能力。Abstract: In order to improve the in-plane mechanical properties of honeycomb structure, a hexagonal hierarchical structure is established based on the conventional hexagonal honeycomb structure. The presented hierarchical one is used to replace part of the cell layer of the conventional hexagonal honeycomb, thus form a new type of multi-order hierarchical gradient honeycomb structure. The impact response characteristics and energy absorption capacity of the in-plane hierarchical gradient honeycomb under different impact velocities are studied through explicit dynamic finite element method. The results show that the deformation mode of the hierarchical gradient honeycomb is related to the plastic collapse strength and impact velocity; the nominal stress-strain curves at the impact end and the fixed end are related to its deformation mode under different impact velocities. Different composite methods will lead to different plateau stress and specific energy absorption of hierarchical gradient honeycomb. Its plateau stress is 45.4%–63.8% higher and energy absorption is 10.8%–34.1% higher than that of the conventional hexagonal honeycomb under high-speed impact. The relative density will affect the energy absorption capacity of hierarchical gradient honeycomb.
-
表 1 单胞结构的几何参数
Table 1. Geometric parameters of a unit cell
Structure l/mm t/mm h/mm α/(°) HL1 5.00 0.30 120 HL2 3.50 0.30 1.15 120 HL3 2.00 0.30 1.15 120 Material ρ/(kg·m–3) E/GPa μ σy/MPa Aluminum 2 700 69 0.3 76 Rigid plate 7 800 210 表 3 不同速度下层级梯度蜂窝的密实应变
Table 3. Densification strains of hierarchical gradient honeycomb at different impact velocities
v/(m·s−1) εd L123 L321 L213 L312 10 0.622 2 0.609 4 0.615 8 0.609 4 30 0.647 7 0.621 5 0.634 6 0.621 6 50 0.673 5 0.641 4 0.673 8 0.654 3 100 0.755 0 0.776 1 0.747 9 0.762 0 表 4 相对密度参数
Table 4. Relative density parameters
Identifier Structure t/mm l/mm ${\rho _{{\text{com}}}}$ RD1 HL3 0.28 2.00 0.228 HL2 0.28 3.50 HL1 0.28 5.00 RD2 HL3 0.30 2.00 0.244 HL2 0.30 3.50 HL1 0.30 5.00 RD3 HL3 0.32 2.00 0.259 HL2 0.32 3.50 HL1 0.32 5.00 -
[1] WANG Z G, LIU J F. Numerical and theoretical analysis of honeycomb structure filled with circular aluminum tubes subjected to axial compression [J]. Composites Part B: Engineering, 2019, 165: 626–635. doi: 10.1016/j.compositesb.2019.01.070 [2] 陈鹏, 侯秀慧, 张凯. 面内冲击荷载下半凹角蜂窝的抗冲击特性 [J]. 高压物理学报, 2019, 33(6): 064104.CHEN P, HOU X H, ZHANG K. Impact resistance of semi re-entrant honeycombs under in-plane dynamic crushing [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064104. [3] KHAN M K, BAIG T, MIRZA S. Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb [J]. Materials Science and Engineering: A, 2012, 539: 135–142. doi: 10.1016/j.msea.2012.01.070 [4] 于鹏山, 刘志芳, 李世强. 新型仿生蜂窝结构的设计与耐撞性能分析 [J]. 高压物理学报, 2022, 36(1): 014204.YU P S, LIU Z F, LI S Q. Design and crashworthiness analysis of new bionic honeycomb structure [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014204. [5] 张新春, 沈振峰, 吴鹤翔, 等. 多段填充复合蜂窝结构的动态响应特性研究 [J]. 湖南大学学报: 自然科学版, 2020, 47(4): 67–75.ZHANG X C, SHEN Z F, WU H X, et al. Study on dynamic response characteristics of multi-segment filled composite honeycomb structure [J]. Journal of Hunan University: Natural Science, 2020, 47(4): 67–75. [6] 刘颖, 何章权, 吴鹤翔, 等. 分层递变梯度蜂窝材料的面内冲击性能 [J]. 爆炸与冲击, 2011, 31(3): 225–231.LIU Y, HE Z Q, WU H X, et al. In-plane impact properties of hierarchical gradient gradient honeycomb materials [J]. Explosion and Shock Waves, 2011, 31(3): 225–231. [7] 李坚, 孟卫华, 张大海, 等. 分层密度梯度蜂窝材料面内动态压缩及吸能特性 [J]. 应用力学学报, 2021, 38(6): 2369–2375.LI J, MENG W H, ZHANG D H, et al. In-plane dynamic compression and energy absorption characteristics of hierarchical density gradient honeycomb materials [J]. Chinese Journal of Applied Mechanics, 2021, 38(6): 2369–2375. [8] NIU X Q, XU F X, ZOU Z, et al. In-plane dynamic crashing behavior and energy absorption of novel bionic honeycomb structures [J]. Composite Structures, 2022, 299: 116064. doi: 10.1016/j.compstruct.2022.116064 [9] QIAO J X, CHEN C Q. In-plane crushing of a hierarchical honeycomb [J]. International Journal of Solids and Structures, 2016, 85/86: 57–66. [10] WANG Z G, DENG J J, LIU K, et al. Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus [J]. Thin-Walled Structures, 2022, 171: 108816. doi: 10.1016/j.tws.2021.108816 [11] LIU H, ZHANG E T, NG B F. In-plane dynamic crushing of a novel honeycomb with functionally graded fractal self-similarity [J]. Composite Structures, 2021, 270: 114106. doi: 10.1016/j.compstruct.2021.114106 [12] LI Z, JIANG Y, WANG T, et al. In-plane crushing behaviors of piecewise linear graded honeycombs [J]. Composite Structures, 2018, 207: 425437. [13] WU H X, LIU Y, ZHANG X C. In-plane crushing behavior and energy absorption design of composite honeycombs [J]. Acta Mechanica Sinica, 2018, 34(6): 1108–1123. doi: 10.1007/s10409-018-0798-4 [14] GIBSON L J, ASHBY M F. Cellular solids [M]. Cambridge University Press, 1997. [15] GIOVANNI T, MAICON C R. On the convergence of the primal hybrid finite element method on quadrilateral meshes [J]. Applied Numerical Mathematics, 2022, 181: 552560. [16] TAO Y, CHEN M J, CHEN H S, et al. Strain rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: experiment and theory [J]. Composite Structures, 2015, 132: 644651. [17] 张新春, 刘颖. 密度梯度蜂窝材料动力学性能研究 [J]. 工程力学, 2012, 29(8): 372–377.ZHANG X C, LIU Y. Research on dynamic properties of density gradient honeycomb materials [J]. Engineering Mechanics, 2012, 29(8): 372–377. [18] 何强, 马大为, 张震东. 分层屈服强度梯度蜂窝材料的动力学性能研究 [J]. 工程力学, 2015, 32(4): 191–196.HE Q, MA D W, ZHANG Z D. Study on dynamic properties of layered yield strength gradient honeycomb materials [J]. Engineering Mechanics, 2015, 32(4): 191–196. [19] 沈振峰, 张新春, 白江畔, 等. 负泊松比内凹环形蜂窝结构的冲击响应特性研究 [J]. 振动与冲击, 2020, 39(18): 89–95, 117.SHEN Z F, ZHANG X C, BAI J P, et al. Study on impact response characteristics of negative Poisson’s ratio inner concave ring honeycomb structure [J]. Journal of Vibration and Shock, 2020, 39(18): 89–95, 117. [20] 白江畔, 张新春, 沈振峰, 等. 冲击载荷下多胞元薄壁结构的动态压溃行为研究 [J]. 振动与冲击, 2020, 39(18): 145–152.BAI J P, ZHANG X C, SHEN Z F, et al. Study on dynamic crushing behavior of multi-cell thin-walled structures under shock loading [J]. Vibration and Shock, 2020, 39(18): 145–152. [21] 乔及森, 李明, 苗红丽. 串联梯度蜂窝结构的面内力学性能 [J]. 塑性工程学报, 2021, 28(11): 115–123.QIAO J S, LI M, MIAO H L. In-plane mechanical properties of series gradient honeycomb structures [J]. Chinese Journal of Plastic Engineering, 2021, 28(11): 115–123.