Effect of FCC Metal Crystal Orientation on Void Growth under High Strain Rate Loading
-
摘要: 采用率相关的晶体塑性本构模型研究了冲击荷载作用下晶体取向对面心立方金属内部孔洞增长的影响。利用VUMAT子程序,将率相关晶体塑性本构模型嵌入ABAQUS有限元软件中,分析了单晶晶内孔洞、双晶晶界孔洞和三角晶界孔洞的增长行为,结果显示:孔洞的变形模式与晶体取向、晶界位置(冲击加载方向与晶界的相对方位)、加载方向相关,晶体的滑移线模型与晶界位置之间的关系可以反映孔洞增长方向。对于晶内孔洞,加载方向越接近[011],孔洞开始增长变形时间越晚,但孔洞的总体增长变形越大;加载方向越接近[111],孔洞开始增长变形时间越早,但孔洞的总体增长变形越小。对于晶界处孔洞,晶界位置影响孔洞的部分变形,但不会影响总体变形。晶体受冲击之后,若孔洞增长方向沿晶内,则晶界会促进孔洞沿晶内增长;若增长方向沿晶界,则晶界会促进孔洞沿晶界方向增长,抑制其向晶内增长。Abstract: The effect of crystal orientation on the void growth in face centered cubic (FCC) metal under impact loading was studied by adopting rate-dependent crystal plastic constitutive model. VUMAT subroutine was used to embed the rate-dependent crystal plastic constitutive model into the ABAQUS finite element software, and the growth behavior of a single crystal inner void, a bicrystal boundary void and a triangular boundary void was analyzed. The results showed that the void deformation pattern is related to three factors: crystal orientation, grain boundary position (relative orientation of impact loading direction and grain boundary) and loading direction. The relation between the crystal slip line model and grain boundary position can reflect the void growth direction. For intracrystalline voids, the closer the loading direction is to [011], the later the beginning of void deformation is, the greater the overall void deformation is. The closer the loading direction is to [111], the earlier the void starts to deform, the smaller the overall void deformation. For voids at grain boundaries, the location of grain boundaries affect part of the deformation of voids, but not the overall deformation. When the deformation direction of the crystal after the impact is intracrystalline, the grain boundary promotes the growth of voids along the intracrystalline. When the deformation direction is along the grain boundary, the grain boundary promotes the growth of voids along the grain boundary, and inhibits their growth into the crystal.
-
Key words:
- crystal plasticity /
- crystal orientation /
- intragranular pore /
- grain boundary pore
-
表 1 晶体取向
Table 1. Grain orientation
Grain Miller-Bravais indices (y-x) Orientation of crystal
(Main loading direction)Orientation of crystal
(xy plane)Angle/(°) A (011)$ [100] $ (011) (010) 0 B (131)$[ 3\bar10]$ (131) (130) 18.4 C (111)$ [\bar 110] $ (111) (110) 45.0 表 2 金属铝的12条滑移系晶面指数和晶向指数
Table 2. Initial orientations of 12 slip systems of aluminum metal
$ \alpha $ nα mα $ \alpha $ nα mα $ \alpha $ nα mα $ \alpha $ nα mα 1 (111) $ \left[ {\bar 101} \right] $ 4 ($1\bar 11 $) $ \left[ {\bar 101} \right] $ 7 ($ \bar 111 $) $ \left[ {0\bar 11} \right] $ 10 ($ 11\bar 1 $) $ \left[ {\bar 110} \right] $ 2 (111) $ \left[ {0\bar 11} \right] $ 5 ($ 1\bar 11 $) $ \left[ {011} \right] $ 8 ($ \bar 111 $) $ \left[ {101} \right] $ 11 ($ 11\bar 1 $) $ \left[ {101} \right] $ 3 (111) $ \left[ {\bar 110} \right] $ 6 ($ 1\bar 11 $) $ \left[ {110} \right] $ 9 ($ \bar 111 $) $ \left[ {110} \right] $ 12 ($ 11\bar 1 $) $ \left[ {011} \right] $ 表 3 金属铝的晶体塑性有限元本构参数
Table 3. Plastic finite element constitutive parameters of aluminum metal crystals
ρ/(kg·m−3) C11/GPa C12/GPa C44/GPa τ0/MPa τs/MPa h0/MPa q $\dot a$/s–1 2700 108 62 28.3 21 61 60 1.4 0.001 -
[1] ANTOUN T, CURRAN D R, RAZORENOV S V, et al. Spall fracture [M]. New York: Springer, 2003. [2] KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1/2): 173–191. doi: 10.1007/s10704-009-9438-0 [3] 林茜, 谢普初, 胡建波, 等. 不同晶粒度高纯铜层裂损伤演化的有限元模拟 [J]. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726LIN Q, XIE P C, HU J B, et al. Numerical simulation on dynamic damage evolution of high pure copper with different grain sizes [J]. Acta Physica Sinica, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726 [4] 张凤国, 刘军, 何安民, 等. 层裂损伤孔洞增长模型参数的确定方法及其应用 [J]. 物理学报, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527ZHANG F G, LIU J, HE A M, et al. Method of determining parameters of void growth damage model and its application to simulation of spall test [J]. Acta Physica Sinica, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527 [5] JIANG Z X, ZHONG Z, XIE P C, et al. Characteristics of the damage evolution and the free surface velocity profile with dynamic tensile spallation [J]. Journal of Applied Physics, 2022, 131(12): 125104. doi: 10.1063/5.0082361 [6] 邓小良, 祝文军, 贺红亮, 等. 沿<111>晶向冲击加载下铜中纳米孔洞增长的塑性机制研究 [J]. 高压物理学报, 2007, 21(1): 59–65. doi: 10.11858/gywlxb.2007.01.010DENG X L, ZHU W J, HE H L, et al. Plasticity mechanism associated with nano-void growth under impact loading along <111> direction in copper [J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59–65. doi: 10.11858/gywlxb.2007.01.010 [7] SUN X Y, XU G K, LI X Y, et al. Mechanical properties and scaling laws of nanoporous gold [J]. Journal of Applied Physics, 2013, 113(2): 023505. doi: 10.1063/1.4774246 [8] RUESTES C J, BRINGA E M, STUKOWSKI A, et al. Plastic deformation of a porous bcc metal containing nanometer sized voids [J]. Computational Materials Science, 2014, 88: 92–102. doi: 10.1016/j.commatsci.2014.02.047 [9] RUESTES C J, BRINGA E M, STUKOWSKI A, et al. Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal [J]. Scripta Materialia, 2013, 68(10): 817–820. doi: 10.1016/j.scriptamat.2013.01.035 [10] RODRIGUEZ-NIEVA J F, RUESTES C J, TANG Y, et al. Atomistic simulation of the mechanical properties of nanoporous gold [J]. Acta Materialia, 2014, 80: 67–76. doi: 10.1016/j.actamat.2014.07.051 [11] TANG T, KIM S, HORSTEMEYER M F. Molecular dynamics simulations of void growth and coalescence in single crystal magnesium [J]. Acta Materialia, 2010, 58(14): 4742–4759. doi: 10.1016/j.actamat.2010.05.011 [12] ZHANG Y Q, JIANG S Y, ZHU X M, et al. Orientation dependence of void growth at triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading [J]. Journal of Physics and Chemistry of Solids, 2016, 98: 220–232. doi: 10.1016/j.jpcs.2016.07.018 [13] XIANG M Z, HU H B, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005 [14] XIANG M Z, HU H B, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388 [15] SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. doi: 10.1016/j.mechmat.2019.01.012 [16] WANG K, ZHANG F G, HE A M, et al. An atomic view on spall responses of release melted lead induced by decaying shock loading [J]. Journal of Applied Physics, 2019, 125(15): 155107. doi: 10.1063/1.5081920 [17] 陈伟. 晶粒尺寸对高纯铝动态力学行为与层裂特性的影响 [D]. 宁波: 宁波大学, 2020.CHEN W. Effect of grain size on dynamic fracture behavior and spallation characteristics of high-purity aluminum [D]. Ningbo: Ningbo University, 2020. [18] HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401–413. doi: 10.1016/0022-5096(72)90017-8 [19] 李宏伟, 杨合, 孙志超. 率相关晶体塑性在有限元应用中的关键技术 [J]. 塑性工程学报, 2008, 15(1): 7–13.LI H W, YANG H, SUN Z C. Key problems for rate-dependent crystal plasticity applied in finite element simulation [J]. Journal of Plasticity Engineering, 2008, 15(1): 7–13. [20] 刘周攀. FCC金属滑移变形和损伤劣化的晶体塑性有限元分析 [D]. 南宁: 广西大学, 2019.LIU Z P. The analysis on slip deformation and damage behavior of FCC metals based on crystal plasticity finite element model [D]. Nanning: Guangxi University, 2019. [21] 王琦, 黄庆学, 马立东. 纯铝弯曲的单晶体塑性有限元模拟 [J]. 太原科技大学学报, 2014, 35(2): 119–122. doi: 10.3969/j.issn.1673-2057.2014.02.009WANG Q, HUANG Q X, MA L D. Aluminum bending of crystal plasticity finite element simmulation [J]. Journal of Taiyuan University of Science and Technology, 2014, 35(2): 119–122. doi: 10.3969/j.issn.1673-2057.2014.02.009