Automated Calibrated Modeling Method of Multiphase Equations of States: Applied to Tin
-
摘要: 状态方程与描述能量、动量、质量守恒的偏微分方程一起,构成了可求解材料动态压缩行为的完备流体力学方程组。动态压缩下,相变会导致材料内能、密度、强度等物理性质的不连续变化,需要构建多相状态方程模型才能精确描述这些变化。通过多相状态方程模型的自动组装,采用计算机智能优化算法自动校准状态方程模型参数,发展了自动化的多相状态方程建模程序AEOS(automated equation of state)。利用AEOS,构建了锡的3套状态方程模型,3套模型的计算结果与相关实验结果基本一致,验证了AEOS程序的适用性。将构建的状态方程模型应用于一维流体力学模拟,发现锡冲击到17 GPa再等熵卸载到常压的压力-温度路径会经过β相-体心四方相-液相三相点,并且可以很好地解释在15.4 GPa的冲击压力下锡的微喷颗粒呈现固-液混合态的实验现象。AEOS的良好表现证明其在大型数字化科研平台以及高通量材料物性计算中将具有广泛的应用前景。Abstract: Equations of state (EOS), combined with the partial differential equations of describing conservations of energy, momentum and mass, form a complete set of fluid dynamics equations on solving dynamic compression behaviors of material. Under dynamic compression, phase transition of material may lead to discontinuous changes of its internal energy, density, strength and other properties, and a multiphase EOS is needed to accurately describe these changes. An automated modeling code of multiphase equations of state (AEOS) is developed, which can construct multiphase EOS model in an automatic way and calibrate parameters of EOS models with a computer intelligent optimization algorithm. By applying AEOS to tin, we obtain three sets of multiphase EOSs. The theoretical results of all the three sets of EOSs are consistent well with the experimental results, which validates the good performance of the AEOS code. And we find that the isentropic release path of tin passes through the three-phase point of the β, the body centered tetragonal (bct), and the liquid phases, when tin is impacted to 17 GPa and then isentropically released to atmospheric pressure. In addition, this result can well explain the experimental phenomenon that tin ejection particles are in a solid-liquid mixture state under the very low impact pressure of 15.4 GPa. The good performance of AEOS insures that it can be widely applied to integrated digital scientific research platforms and scenarios of high-flux material property calculations in the near future.
-
Key words:
- multiphase equation of state /
- automated calibrating /
- high pressure /
- tin
-
表 1 锡的固-液两相状态方程模型1的校准参数
Table 1. Calibrated parameters of the solid-liquid two-phase EOS model 1 for tin
V0/(cm3·g−1) C/(km·s−1) S γ a Ne 0.1341 2.612 1.482 1.47 0 4.0 ΔS Tm0/K γ0m am 1.16R 836.9 2.20 0.035 表 2 锡的多相状态方程模型2的校准参数
Table 2. Calibrated parameters of the multiphase EOS model 2 for tin
Phase E0/(J·g−1) V0/(cm3·g−1) B0/GPa a1 γ a ΔS β 0 0.1369 56.75 1.39 1.85 0.78 0 bct 36.3 0.1329 59.78 0.70 2.66 3.57 1.23R Liquid −16.6 0.1425 45.06 1.89 1.56 1.75 3.22R 表 3 锡的多相状态方程模型3的校准参数
Table 3. Calibrated parameters of the multiphase EOS model 3 for tin
Phase E0/(J·g−1) V0/(cm3·g−1) B0/GPa a1 γ a cV0/(J·g−1·K−1) ΔS β 0 0.1369 56.7 0.75 1.54 1.64 0.233 0 bct 32.5 0.1338 54.8 1.14 2.42 3.48 0.254 1.18R Liquid −14.7 0.1413 48.0 1.75 1.53 1.74 0.302 3.43R -
[1] OERTEL M, HEMPEL M, KLÄHN T, et al. Equations of state for supernovae and compact stars [J]. Reviews of Modern Physics, 2017, 89(1): 015007. doi: 10.1103/RevModPhys.89.015007 [2] 龚自正, 谢鸿森, FEI Y W. 我国动高压物理应用于地球科学的研究进展 [J]. 高压物理学报, 2013, 27(2): 168–187. doi: 10.11858/gywlxb.2013.02.003GONG Z Z, XIE H S, FEI Y W. Reviews of recent advances of shock wave physics applied to earth science in China [J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 168–187. doi: 10.11858/gywlxb.2013.02.003 [3] GRIGORIEV B, ALEXANDROV I, GERASIMOV A. Application of multiparameter fundamental equations of state to predict the thermodynamic properties and phase equilibria of technological oil fractions [J]. Fuel, 2018, 215: 80–89. doi: 10.1016/j.fuel.2017.11.022 [4] 王利生. 状态方程及其应用于石油与天然气相平衡计算的有关进展 [J]. 石油与天然气化工, 1996, 25(3): 137–142.WANG L S. The development concerning equations of state and their applications in phase equilibrium calculation for oil and natural gas [J]. Chemical Engineering of Oil and Gas, 1996, 25(3): 137–142. [5] 段振豪. 地质流体状态方程 [J]. 中国科学: 地球科学, 2010, 40(4): 393–413. [6] YOUNG D A. Phase diagrams of the elements [M]. Berkeley, USA: University of California Press, 1991. [7] DUVALL G E, GRAHAM R A. Phase transitions under shock-wave loading [J]. Reviews of Modern Physics, 1977, 49(3): 523–579. doi: 10.1103/RevModPhys.49.523 [8] JOHNSON J N, HAYES D B, ASAY J R. Equations of state and shock-induced transformations in solid Ⅰ–solid Ⅱ–liquid bismuth [J]. Journal of Physics and Chemistry of Solids, 1974, 35(4): 501–515. doi: 10.1016/S0022-3697(74)80004-1 [9] ZHU Q, ZHANG F, HUANG Y, et al. An all-round AI-chemist with a scientific mind [J]. National Science Review, 2022, 9(10): nwac190. doi: 10.1093/nsr/nwac190 [10] DOROGOKUPETS P I, DYMSHITS A M, LITASOV K D, et al. Thermodynamics and equations of state of iron to 350 GPa and 6000 K [J]. Scientific Reports, 2017, 7: 41863. doi: 10.1038/srep41863 [11] 孙毅, 耿华运, 吴强, 等. AEOS建模程序-V1.0: 2022SR0346940 [P]. 2022−03−15. [12] 向士凯, 孙毅, 耿华运, 等. ICON高维参数全局智能优化软件: 2022SR0441868 [P]. 2022−04−07. [13] CHISOLM E D. Evaluating thermodynamic quantities in mixed-phase regions of a single-component material: LA-UR-17-30700 [R]. Los Alamos: Los Alamos National Laboratories, 2017. [14] COX G A, CHRISTIE M A. Fitting of a multiphase equation of state with swarm intelligence [J]. Journal of Physics: Condensed Matter, 2015, 27(40): 405201. doi: 10.1088/0953-8984/27/40/405201 [15] COX G. Generating a multiphase equation of state with swarm intelligence [J]. AIP Conference Proceedings, 2018, 1979(1): 040002. doi: 10.1063/1.5044780 [16] VELIZHANIN K A, COE J D. Automated fitting of a semi-empirical multiphase equation of state for carbon [J]. AIP Conference Proceedings, 2020, 2272(1): 070051. doi: 10.1063/12.0000798 [17] 谭华. 金属的冲击波温度测量(Ⅱ)——界面卸载近似 [J]. 高压物理学报, 1996, 10(3): 161–169. doi: 10.11858/gywlxb.1996.03.001TAN H. Shock temperature measurements for metals-release approximation at the interface [J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 161–169. doi: 10.11858/gywlxb.1996.03.001 [18] 莫建军, 孙承纬. 金属铝和铜等熵压缩线计算: GF-A0114670G [R]. 绵阳: 中国工程物理研究院流体物理研究所, 2007. [19] ROYCE E B. GRAY, a three-phase equation of state for metals: UCRL-51121 [R]. Livermore, USA: California University, 1971. [20] SALAMAT A, BRIGGS R, BOUVIER P, et al. High-pressure structural transformations of Sn up to 138 GPa: angle-dispersive synchrotron X-ray diffraction study [J]. Physical Review B, 2013, 88(10): 104104. doi: 10.1103/PhysRevB.88.104104 [21] MARSH S P. LASL shock Hugoniot data [M]. Berkeley, USA: University of California Press, 1980. [22] HU J B, ZHOU X M, TAN H, et al. Successive phase transitions of tin under shock compression [J]. Applied Physics Letters, 2008, 92(11): 111905. doi: 10.1063/1.2898891 [23] 李俊. 冲击测温研究2018年度总结 [R]. 绵阳: 中国工程物理研究院流体物理研究所, 2018. [24] COX G A. A multi-phase equation of state and strength model for tin [J]. AIP Conference Proceedings, 2006, 845(1): 208–211. doi: 10.1063/1.2263300 [25] GREEFF C, CHISOLM E, GEORGE D, et al. SESAME 2161: an explicit multiphase equation of state for tin: LA-UR-05−9414 [R]. Los Alamos, USA: Los Alamos National Laboratories, 2005. [26] BRIGGS R, DAISENBERGER D, LORD O T, et al. High-pressure melting behavior of tin up to 105 GPa [J]. Physical Review B, 2017, 95(5): 054102. doi: 10.1103/PhysRevB.95.054102 [27] REHN D A, GREEFF C W, BURAKOVSKY L, et al. Multiphase tin equation of state using density functional theory [J]. Physical Review B, 2021, 103(18): 184102. doi: 10.1103/PhysRevB.103.184102 [28] KINGON A I, CLARK J B. A redetermination of the melting curve of tin to 3.7 GPa [J]. High Temperatures-High Pressures, 1980, 12: 75. [29] XU L, BI Y, LI X H, et al. Phase diagram of tin determined by sound velocity measurements on multi-anvil apparatus up to 5 GPa and 800 K [J]. Journal of Applied Physics, 2014, 115(16): 164903. doi: 10.1063/1.4872458 [30] 杨靖. 国家自然科学基金青年基金项目(11902308)结题报告 [R]. 绵阳: 中国工程物理研究院流体物理研究所, 2023.