Dynamic Mechanical Behavior of G550 Cold-Formed Steel under High Temperature and High Strain Rate
-
摘要: 为研究G550冷弯钢在高温和高应变率下的动态力学性能,采用高温同步控制霍普金森拉杆装置,开展了不同温度下的高应变率拉伸试验,并在高速液压拉伸试验机上进行了室温下的中应变率拉伸试验。通过获得的应力-应变曲线,得到了材料的本构模型,结合微观形貌分析,探究了温度和应变率对流变应力的影响。结果表明:G550冷弯钢具有明显的应变率强化和温度软化效应。在特定的高应变率范围内(1000~1500 s−1),温度对流变应力的影响大于应变率。基于温度软化系数随温度变化的特征,提出了G550冷弯钢的修正Johnson-Cook本构模型。该模型可以较好地描述G550冷弯钢在高温和高应变率下的动态力学行为,从而为G550冷弯钢在高温、爆炸冲击相关的有限元仿真提供参考。Abstract: To study the dynamic mechanical properties of G550 cold-formed steel under high temperature and high strain rate, high-temperature synchronous controlled dynamic loading device (split Hopkinson tensile bar) was implemented. The medium strain rate tensile tests were also conducted with the high-speed hydraulic tensile testing machine. The constitutive model and the influence of temperature and strain rate on the flow stress were built and explored through the stress-strain curve and the microscopic analysis. The results show that G550 cold-formed steel has significant strain rate strengthening and temperature softening effects. In the specific high strain rate range (1000−1500 s−1), the influence of temperature on the flow stress is more significant than that of strain rate. Then, a modified Johnson-Cook constitutive model of G550 cold-formed steel was proposed according to the temperature softening coefficient. This model can better describe the dynamic mechanical behavior of G550 cold-formed steel under high temperature and high strain rate, and can contribute to the finite element simulation of G550 cold-formed steel under high temperature and explosion impact.
-
Key words:
- G550 cold-formed steel /
- high temperature /
- high strain rate /
- constitutive model
-
表 1 G550冷弯钢的化学组成
Table 1. Chemical element of G550 cold-formed steel
% C Si Mn P S Fe 0.080 0.011 0.390 0.020 0.011 Balance 表 2 1000~1500 s−1、200~500 ℃下修正本构模型的平均相对误差和相关系数
Table 2. Mean relative error and correlation coefficient of modified constitutive under 1000−1500 s−1 and 200−500 ℃
$\dot{ { \varepsilon } }$/s−1 ${\eta {_{ {\text{MRE} } } }}$/% ${\eta {_{\text{R} } }}$ 200 ℃ 300 ℃ 400 ℃ 500 ℃ 200 ℃ 300 ℃ 400 ℃ 500 ℃ 1000 3.8 3.1 2.8 5.9 0.9778 0.9827 0.9840 0.9639 1500 2.9 6.1 8.9 2.5 0.9836 0.9627 0.9428 0.9861 -
[1] WANG W, WANG Y P, YANG J C, et al. Investigation on air blast resistance of POZD-coated composite steel plates: experiment and numerical analysis [J]. Composites Part B: Engineering, 2022, 237: 109858. doi: 10.1016/j.compositesb.2022.109858 [2] XING Z, KUCUKLER M, GARDNER L. Local buckling of stainless steel Ⅰ-sections in fire: finite element modelling and design [J]. Thin-Walled Structures, 2021, 161: 107486. doi: 10.1016/j.tws.2021.107486 [3] 杨智程, 刘龙飞, 刘炼煌, 等. 外部爆炸载荷下表面粗糙度对45钢柱壳剪切带行为的影响 [J]. 高压物理学报, 2022, 36(4): 044106. doi: 10.11858/gywlxb.20220506YANG Z C, LIU L F, LIU L H, et al. Effect of surface roughness on shear band behavior of 45 steel cylindrical shell under external explosion load [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044106. doi: 10.11858/gywlxb.20220506 [4] KE L, LIU K, SHA Y Y, et al. Blast responses of steel stiffened panels subjected to plane shock waves [J]. Thin-Walled Structures, 2021, 166: 107933. doi: 10.1016/j.tws.2021.107933 [5] KUMAR W, SHARMA U K, SHOME M. Mechanical properties of conventional structural steel and fire-resistant steel at elevated temperatures [J]. Journal of Constructional Steel Research, 2021, 181: 106615. doi: 10.1016/j.jcsr.2021.106615 [6] 韩亚威, 杨璐, 彭磊, 等. 高温高应变率下LY315钢材动态力学性能研究 [J]. 建筑结构学报, 2023, 44(1): 319–326. doi: 10.14006/j.jzjgxb.2021.0478HAN Y W, YANG L, PENG L, et al. Study on dynamic mechanical behavior of LY315 steel at elevated temperature and high strain rate [J]. Journal of Building Structures, 2023, 44(1): 319–326. doi: 10.14006/j.jzjgxb.2021.0478 [7] 孙涛. 低屈服点钢的动态本构关系及其抗爆吸能性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.SUN T. Study of low yield point steel’s dynamic constitutive relationship and its performance on explosion energy absorption [D]. Harbin: Harbin Institute of Technology, 2011. [8] 郭立波. 低屈服点钢的动态本构模型及抗爆性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012.GUO L B. Research on low yield point steel’s dynamic constitutive model and its explosive performance [D]. Harbin: Harbin Institute of Technology, 2012. [9] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158, 172. doi: 10.13465/j.cnki.jvs.2014.09.028LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158, 172. doi: 10.13465/j.cnki.jvs.2014.09.028 [10] 于文静, 史健勇, 赵金城. Q345钢材动态力学性能研究 [J]. 建筑结构, 2011, 41(3): 28–30, 63. doi: 10.19701/j.jzjg.2011.03.007YU W J, SHI J Y, ZHAO J C. Research of dynamic mechanical behavior of Q345 steel [J]. Building Structure, 2011, 41(3): 28–30, 63. doi: 10.19701/j.jzjg.2011.03.007 [11] 刘禹昕, 朱涛, 肖守讷, 等. 轨道车辆SUS304不锈钢材料动态力学性能与本构模型修正 [J]. 机械强度, 2022, 44(1): 74–80. doi: 10.16579/j.issn.1001.9669.2022.01.010LIU Y X, ZHU T, XIAO S N, et al. Dynamic mechanical properties and constitutive model modification of SUS304 stainless steel used in carbodies of trains [J]. Journal of Mechanical Strength, 2022, 44(1): 74–80. doi: 10.16579/j.issn.1001.9669.2022.01.010 [12] 张继林, 罗文翠, 贾海深, 等. 高应变率下06Cr19Ni10奥氏体不锈钢Johnson-Cook本构模型研究 [J]. 钢铁钒钛, 2022, 43(4): 158–166. doi: 10.7513/j.issn.1004-7638.2022.04.024ZHANG J L, LUO W C, JIA H S, et al. Research on Johnson-Cook constitutive model of 06Cr19Ni10 austenitic stainless steel at high strain rate [J]. Iron Steel Vanadium Titanium, 2022, 43(4): 158–166. doi: 10.7513/j.issn.1004-7638.2022.04.024 [13] 张子凌, 岑志波, 蒋磊, 等. 冲击荷载下C型G550冷弯钢的断裂机理研究 [J]. 宁波大学学报(理工版), 2022, 35(1): 90–97. doi: 10.3969/j.issn.1001-5132.2022.01.014ZHANG Z L, CEN Z B, JIANG L, et al. Fracture mechanism of G550 channel cold-formed steel under impact load [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2022, 35(1): 90–97. doi: 10.3969/j.issn.1001-5132.2022.01.014 [14] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. doi: 10.11883/1001-1455(2005)04-0368-06SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. doi: 10.11883/1001-1455(2005)04-0368-06 [15] 李尚昆, 胡文军, 徐伟芳, 等. 高温霍普金森拉杆实验技术研究进展 [J]. 中国测试, 2018, 44(10): 35–42. doi: 10.11857/j.issn.1674-5124.2018.10.006LI S K, HU W J, XU W F, et al. Research progress on SHTB experiment technique at elevated temperature [J]. China Measurement & Test, 2018, 44(10): 35–42. doi: 10.11857/j.issn.1674-5124.2018.10.006 [16] LI Y L, GUO Y Z, HU H T, et al. A critical assessment of high-temperature dynamic mechanical testing of metals [J]. International Journal of Impact Engineering, 2009, 36(2): 177–184. doi: 10.1016/j.ijimpeng.2008.05.004 [17] HANG W, WEI L Q, DEBELA T T, et al. Crystallographic orientation effect on the polishing behavior of LiTaO3 single crystal and its correlation with strain rate sensitivity [J]. Ceramics International, 2022, 48(6): 7766–7777. doi: 10.1016/j.ceramint.2021.11.324 [18] LEE W S, LIN C F. Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures [J]. Materials Science and Engineering: A, 1998, 241(1/2): 48–59. doi: 10.1016/S0921-5093(97)00471-1 [19] JOHNSTON W G, GILMAN J J. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals [J]. Journal of Applied Physics, 1959, 30(2): 129–144. doi: 10.1063/1.1735121 [20] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9 [21] 汪家炜. 高温高应变率下G550冷弯钢的本构关系研究 [D]. 宁波: 宁波大学, 2021.WANG J W. Study on constitutive relationship of G550 cold-formed steel at high temperature and high strain rate [D]. Ningbo: Ningbo University, 2021. [22] 刘鸿文. 材料力学 (Ⅰ) [M]. 5版. 北京: 高等教育出版社, 2011.LIU H W. Mechanics of materials (Ⅰ) [M]. 5th ed. Beijing: Higher Education Press, 2011. [23] 杨觉先. 金属塑性变形物理基础 [M]. 北京: 冶金工业出版社, 1986.YANG J X. Fundamentals of metal plastic physical deformation [M]. Beijing: Metallurgical Industry Press, 1986.