高压气体驱动激波管的数值模拟与参数影响分析

张坤玉 陈德 吴昊

张坤玉, 陈德, 吴昊. 高压气体驱动激波管的数值模拟与参数影响分析[J]. 高压物理学报, 2023, 37(3): 033301. doi: 10.11858/gywlxb.20220704
引用本文: 张坤玉, 陈德, 吴昊. 高压气体驱动激波管的数值模拟与参数影响分析[J]. 高压物理学报, 2023, 37(3): 033301. doi: 10.11858/gywlxb.20220704
ZHANG Kunyu, CHEN De, WU Hao. Numerical Simulation and Parametric Analysis of High-Pressure Gas-Driven Shock Tube[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 033301. doi: 10.11858/gywlxb.20220704
Citation: ZHANG Kunyu, CHEN De, WU Hao. Numerical Simulation and Parametric Analysis of High-Pressure Gas-Driven Shock Tube[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 033301. doi: 10.11858/gywlxb.20220704

高压气体驱动激波管的数值模拟与参数影响分析

doi: 10.11858/gywlxb.20220704
基金项目: 国家自然科学基金(52078379)
详细信息
    作者简介:

    张坤玉(1999-),女,硕士研究生,主要从事结构抗爆研究. E-mail:Zky2233938607@163.com

    通讯作者:

    吴 昊(1981-),男,博士,教授,主要从事冲击爆炸效应与防护研究. E-mail:wuhaocivil@tongji.edu.cn

  • 中图分类号: O382.1; O521.3

Numerical Simulation and Parametric Analysis of High-Pressure Gas-Driven Shock Tube

  • 摘要: 爆炸荷载作用下建筑构件的动态响应与损伤破坏的试验研究对于结构抗爆设计具有重要的参考价值。为了探究激波管参数对末端荷载峰值和持时的影响,首先,基于商用有限元分析软件ANSYS/LS-DYNA开展了典型激波管试验的数值模拟,通过对比膨胀段末端反射超压和测试构件的挠度时程,验证了激波管有限元模型、参数取值和数值分析方法的准确性;然后,设计了末端尺寸为3 m×3 m的激波管,开展了激波管几何参数和驱动段超压对末端反射超压的参数影响分析,结果表明:超压峰值和持时随驱动段长度、直径和超压的增大而增加,随膨胀段角度减小而增加;最后,给出了基于反射超压峰值和持时的激波管设计方法,并通过设计算例进行了验证。

     

  • 图  激波管示意图

    Figure  1.  Schematic diagram of shock tube

    图  边界支撑条件

    Figure  2.  Boundary conditions

    图  激波管试验有限元模型

    Figure  3.  Finite element model of shock tube test

    图  不同网格尺寸下膨胀段末端反射超压时程

    Figure  4.  Reflected overpressure-time histories with different mesh sizes

    图  不同时刻的压力云图

    Figure  5.  Instantaneous pressure contours

    图  作用于RC板的反射超压时程

    Figure  6.  Reflected overpressure-time histories acted on RC slab

    图  数值模拟与试验得到的反射超压荷载曲线对比

    Figure  7.  Comparisons of reflected overpressure-time histories obtained by simulation and experiment

    图  数值模拟与试验得到的RC板挠度时程曲线对比

    Figure  8.  Comparisons of deflection-time histories of RC slab obtained by simulation and experiment

    图  激波管参数

    Figure  9.  Parameters of shock tube

    图  10  不同驱动段超压下末端反射超压时程曲线

    Figure  10.  Reflected overpressure-time histories at the end of driven section under different overpressures of driver section

    图  11  不同驱动段超压下末端反射超压峰值和持时

    Figure  11.  Peak reflected overpressure and positive time duration at the end of driven section under different overpressures of driver section

    图  12  不同驱动段长度下末端反射超压时程

    Figure  12.  Reflected overpressure-time histories at the end of driven section under different driver section lengths

    图  13  不同下驱动段长度下末端反射超压峰值和持时

    Figure  13.  Peak reflected overpressure and positive time duration at the end of driven section under different driver section lengths

    图  14  不同驱动段直径下末端超压峰值和持时

    Figure  14.  Peak reflected overpressure and positive time duration at the end of driven section under different driver section diameters

    图  15  不同膨胀段角度下末端反射超压峰值和持时

    Figure  15.  Peak reflected overpressure and positive time duration at the end of driven section under different driven section angles

    表  1  理想气体材料参数

    Table  1.   Parameters of gas

    Gas typep/MPa${\rho {_0}}$/(kg·m−3)${e{_0}}$/(MJ·m−3)
    Air0.11.290.25
    High-pressure gas0.1n1.29n0.25n
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Test cases

    CaseOverpressure of driver section/kPaLength of driver section/mm
    S-161.4305
    S-280.71 830
    S-3697.12 745
    S-4637.14 880
    下载: 导出CSV

    表  3  RC板试验工况

    Table  3.   Test cases of RC slabs

    CaseBoundary conditionsThickness of RC slabs/mmConcrete strength/MPaOverpressure of driver section/kPaLength of driver section/mm
    S-5Simply-supported7560.0 801 830
    S-6Simply-supported7560.01331 830
    S-7Fixed7549.51251 830
    下载: 导出CSV

    表  4  拟合系数

    Table  4.   Fitted coefficients

    AB CDE F G H
    –8.09–16.88405.54–2.9041.19–93.769.75542.06
    IJKLMNO
    –2.0911.73–11.78–231.52–326.5331.10–49.57
    ABCDEFGH
    –0.611.22–26.59–0.20–2.103.790.41–11.95
    IJKLMNO
    –0.342.571.6213.905.970.991.24
    下载: 导出CSV

    表  5  设计工况

    Table  5.   Designed cases

    Designed caseΔp/kPa Δt/msl/md/mp/MPaθ/(°)
    DesignedCalc.Sim.DesignedCalc.Sim.
    D-1130136.57127.97 1717.9917.7030.70.510.55
    D-2350352.25357.101516.0814.8530.71.510.55
    下载: 导出CSV
  • [1] BREWER T R, CRAWFORD J E, MORRILL K B, et al. Design, analysis, and testing of a blast-resistant building façade [J]. International Journal of Computational Methods and Experimental Measurements, 2016, 4(3): 191–200. doi: 10.2495/CMEM-V4-N3-191-200
    [2] OESTERLE M G. Blast simulator wall tests: experimental methods and mitigation strategies for reinforced concrete and concrete masonry [D]. San Diego: University of California, 2009: 78–83.
    [3] JACQUES E. Blast retrofit of reinforced concrete walls and slabs [D]. Canada: University of Ottawa, 2011: 40–122.
    [4] OPALKA K O, PERSON R J. CFD design studies of an advanced concept driver for a large blast/thermal simulator [C]//AIP Conference Proceedings. USA: American Institute of Physics, 1990, 208(1): 885–890.
    [5] 任辉启, 王世合, 周松柏, 等. 大型爆炸波模拟装置研制及其应用 [C]//第十六届全国激波与激波管学术会议论文集, 2014.

    REN H Q, WANG S H, ZHOU S B, et al. The development and application of large blast wave simulator[C]//The 16th National Conference on Shock Waves and Shock Tubes, 2014.
    [6] CLUBLEY S K. Steel sections subject to a long-duration blast [J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2013, 166(6): 273–281. doi: 10.1680/stbu.12.00007
    [7] CLUBLEY S K. Non-linear long duration blast loading of cylindrical shell structures [J]. Engineering Structures, 2014, 59: 113–126. doi: 10.1016/j.engstruct.2013.10.030
    [8] CANNON L, CLUBLEY S K. Structural response of simple partially-clad steel frames to long-duration blast loading [J]. Structures, 2021, 32: 1260–1270.
    [9] LLOYD A. Performance of reinforced concrete columns under shock tube induced shock wave loading [D]. Canada: University of Ottawa, 2010: 43–53.
    [10] REMENNIKOV A, UY B, CHAN E, et al. The Australian national facility for physical blast simulation [C]//The 2019 Coal Operators Conference. Wollongong, Australian, 2019.
    [11] DALLRIVA F D, JOHNSONO C F, O'DANIEL J L, et al. Blast load simulator experiments for computational model validation: report 1 [R]. U. S. Army Engineer Research and Development Center, Vicksburg United States, 2016.
    [12] ANDREOTTI R, COLOMBO M, GUARDONE A, et al. Performance of a shock tube facility for impact response of structures [J]. International Journal of Non-Linear Mechanics, 2015, 72: 53–66. doi: 10.1016/j.ijnonlinmec.2015.02.010
    [13] AUNE V, CASADEI F, VALSA G, et al. A shock tube used to study the dynamic response of blast-loaded plates [J]. Multidisciplinary Digital Publishing Institute Proceedings, 2018, 2(8): 503.
    [14] ISMAIL A, EZZELDIN M, EL-DAKHAKHNI W, et al. Blast load simulation using conical shock tube systems [J]. International Journal of Protective Structures, 2020, 11(2): 135–158. doi: 10.1177/2041419619858098
    [15] LS-DYNA. Keyword user’s manual [Z]. Livermore, California, USA: Livermore Software Technology Corporation, 2020.
    [16] STOUFFER D C, DAME L T. Inelastic deformation of metals: models, mechanical properties, and metallurgy [M]. John Wiley & Sons, 1996: 72–73.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  66
  • PDF下载量:  47
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-02-09
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-06-19
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回