Analysis of Energy Characteristics and Failure Mode of Pegmatite Gabbro under Confining Pressure
-
摘要: 为探究围压条件下伟晶辉长岩的能量释放与破坏模式的关系,利用霍普金森压杆和LS-DYNA数值模拟软件对伟晶辉长岩开展了不同围压和不同冲击速度下的动态力学性能测试,分析其在不同围压和应变率下的能量释放特征及破坏规律。结果表明:高围压下,试样无明显塑性变形阶段,且围压状态对高应变率下的动态抗压强度有抑制作用,当冲击气压高于0.4 MPa时,动态抗压强度的增长趋势放缓;应变率和围压对伟晶辉长岩的能量与破坏模式有显著影响。随着围压的升高,试样的反射能占比增大,而透射能占比减小;能耗密度随应变率的增加而增大,当应变率为95 s–1时(对应的冲击气压为0.4 MPa)出现拐点,同时高围压下的能耗密度大于低围压下的能耗密度。对于处于围压下的试样,其破坏断面多带有一定的角度,通过LS-DYNA有限元软件模拟了试样在围压下的动态破坏过程,发现中低围压下试样多呈剪切破坏,而高围压下试样有多条剪切裂纹发育贯通,呈复合破坏模式。Abstract: To explore the relationship between energy release and failure mode of pegmatite gabbro under confining pressure, the dynamic mechanical properties under different confining pressures and different impact velocities were studied using split Hopkinson pressure bar and LS-DYNA simulation software, and the energy release characteristics and the failure laws under different confining pressures and strain rates were analyzed. The results show that there is no obvious plastic deformation stage under high confining pressure, and the confining pressure restrains the dynamic compressive strength under high strain rate, and the growth trend of the dynamic compressive strength slows down when the impact pressure is greater than 0.4 MPa in the specimen. The strain rate and the confining pressure have great significance for the energy and the failure mode of the specimen. With the increment of the confining pressure, the proportion of the reflected energy of the specimen gradually increases, while the proportion of the transmitted energy decreases. The energy consumption density increases with the increment of the strain rate, and there is an inflection point at the strain rate of 95 s–1 (corresponding to 0.4 MPa of impact pressure). The energy consumption density under high confining pressure is greater than that under low confining pressure. The specimen under confining pressure usually has a certain angle on the failure section. LS-DYNA simulations showed the dynamic failure process of the specimen under confining pressure from microscopic point of view. The specimen is mostly shear failure under medium and low confining pressures, while under high confining pressure, the specimen has multiple shear cracks developed and penetrated, showing a composite failure mode.
-
Key words:
- Hopkinson pressure bar /
- pegmatite gabbro /
- energy dissipation /
- dynamic failure process
-
表 1 伟晶辉长岩的静态力学参数
Table 1. Static mechanical parameters of pegmatite gabbro
ρ/(kg·m−3) fcu/MPa ft/MPa E/GPa μ 3340 62.2 4.57 8.96 0.26 表 2 冲击载荷下岩样的试验参数
Table 2. Test parameters of rock specimens under impact load
pa/MPa Specimen No. v/(m·s−1) pc/MPa $\dot \varepsilon$/s−1 ${\sigma _{\rm d}}$/MPa WI/J WR/J WT/J WS/J ${\psi {_{ {\text{DIF} } } } }$ 0.2 1 4.51 5 26.41 50.51 67.36 8.21 42.64 16.51 2 4.28 10 27.39 58.28 64.31 7.21 39.22 17.88 3 4.85 15 29.52 66.05 68.62 7.89 39.36 21.37 1.06 4 4.29 20 30.32 67.34 64.71 6.62 35.37 22.72 1.08 5 4.46 25 30.81 70.81 61.64 8.50 30.28 22.86 1.14 0.3 6 8.32 5 69.75 97.55 89.34 11.39 49.04 28.91 1.57 7 8.24 10 66.61 111.72 85.75 7.89 50.31 27.55 1.80 8 8.29 15 67.98 120.33 86.16 7.50 48.74 29.92 1.93 9 7.92 20 63.58 138.65 82.01 8.91 42.89 30.21 2.23 10 8.07 25 62.82 144.26 84.11 10.86 39.87 33.38 2.32 0.4 11 11.19 5 90.97 153.01 118.21 10.99 72.84 34.38 2.46 12 11.05 10 97.28 159.45 113.53 8.33 65.25 39.95 2.56 13 11.28 15 92.48 175.79 121.55 13.28 56.77 51.50 2.83 14 11.67 20 93.58 189.73 123.42 22.62 45.35 55.45 3.05 15 11.52 25 93.09 197.17 119.47 26.05 33.90 59.52 3.17 0.5 16 14.48 5 108.31 160.44 146.45 15.86 79.39 51.20 2.58 17 14.26 10 110.04 164.89 148.38 17.15 78.21 53.02 2.65 18 14.32 15 116.35 181.23 141.88 19.35 69.87 52.66 2.91 19 14.56 20 107.82 194.11 140.60 15.85 69.90 54.85 3.12 20 14.17 25 109.20 203.02 158.39 24.96 53.44 79.99 3.26 0.6 21 16.18 5 132.33 170.09 219.44 17.59 113.40 88.45 2.73 22 16.47 10 131.52 174.30 228.78 25.39 109.17 94.22 2.80 23 16.80 15 136.14 188.17 218.56 26.88 93.52 98.16 3.03 24 16.53 20 134.50 206.18 217.69 37.96 81.15 98.58 3.31 25 16.39 25 129.29 225.17 224.31 46.74 74.49 103.08 3.62 表 3 伟晶辉长岩HJC模型参数
Table 3. HJC model parameters of pegmatite gabbro
ρ/(kg·m–3) G/GPa Fc/MPa A B C N Smax T/MPa pc/MPa μc 3340 3.55 62.2 0.52 0.79 0.007 0.61 7 4.57 20.73 3.33×10–3 pL/GPa μL K1/GPa K2/GPa K3/GPa D1 D2 ${\dot \varepsilon {_0} }$/s−1 fs ${\varepsilon {_{\rm {fmin} } } }$ 1.2 0.1 77 −169 206 0.04 1.0 1 2.0 0.004 -
[1] 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望 [J]. 煤炭学报, 2021, 46(3): 846–866. doi: 10.13225/j.cnki.jccs.YT21.0176LI X B, GONG F Q. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing [J]. Journal of China Coal Society, 2021, 46(3): 846–866. doi: 10.13225/j.cnki.jccs.YT21.0176 [2] 焦振华, 穆朝民, 王磊, 等. 被动围压下煤冲击压缩动态力学特性试验研究 [J]. 振动与冲击, 2021, 40(21): 185–193. doi: 10.13465/j.cnki.jvs.2021.21.025JIAO Z H, MU C M, WANG L, et al. Tests for dynamic mechanical properties of coal impact compression under passive confining pressure [J]. Journal of Vibration and Shock, 2021, 40(21): 185–193. doi: 10.13465/j.cnki.jvs.2021.21.025 [3] 王伟, 梁渲钰, 张明涛, 等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究 [J]. 岩土力学, 2021, 42(10): 2647–2658. doi: 10.16285/j.rsm.2021.0095WANG W, LIANG X Y, ZHANG M T, et al. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647–2658. doi: 10.16285/j.rsm.2021.0095 [4] LI L, KOU X Y, ZHANG G, et al. Experimental study on dynamic compressive behaviors of sand under passive confining pressure [J]. Materials, 2022, 15(13): 4690. doi: 10.3390/ma15134690 [5] ZHENG D, SONG W D, CAO S, et al. Dynamical mechanical properties and microstructure characteristics of cemented tailings backfill considering coupled strain rates and confining pressures effects [J]. Construction and Building Materials, 2022, 320: 126321. doi: 10.1016/j.conbuildmat.2022.126321 [6] 刘军忠, 许金余, 赵德辉, 等. 主动围压下地下工程岩石的冲击压缩特性试验研究 [J]. 岩石力学与工程学报, 2011, 30(Suppl 2): 4104–4109.LIU J Z, XU J Y, ZHAO D H, et al. Experimental study of shock compression properties of underground engineering rock under active confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl 2): 4104–4109. [7] 王泽东, 许金余, 吕晓聪, 等. 围压作用下岩石冲击破坏与变形特性试验研究 [J]. 地下空间与工程学报, 2011, 7(2): 311–316, 334. doi: 10.3969/j.issn.1673-0836.2011.02.018WANG Z D, XU J Y, LYU X C, et al. Research on characteristic of impact damage and distortion of rock under confining pressure [J]. Chinese Journal of Underground Space and Engineering, 2011, 7(2): 311–316, 334. doi: 10.3969/j.issn.1673-0836.2011.02.018 [8] 李鸿儒, 王志亮, 郝士云. 主动围压下花岗岩动态力学特性与本构模型研究 [J]. 水文地质工程地质, 2018, 45(3): 49–55. doi: 10.16030/j.cnki.issn.1000-3665.2018.03.06LI H R, WANG Z L, HAO S Y. A study of the dynamic properties and constitutive model of granite under active confining pressures [J]. Hydrogeology & Engineering Geology, 2018, 45(3): 49–55. doi: 10.16030/j.cnki.issn.1000-3665.2018.03.06 [9] GAO H, ZHAI Y. Numerical investigation of the concrete-rock combined body influence of inclined interface on dynamic characteristics and failure behaviors [J]. Arabian Journal of Geosciences, 2022, 15(5): 435. doi: 10.1007/S12517-022-09749-1 [10] 马泗洲, 刘科伟, 郭腾飞, 等. 煤岩组合体巴西劈裂动态力学特征数值分析 [J]. 高压物理学报, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589MA S Z, LIU K W, GUO T F, et al. Numerical analysis of dynamic mechanical characteristics of Brazilian splitting of coal-rock combination bodies [J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589 [11] 李祥龙, 李强, 王建国, 等. 胶结充填体冲击破坏及损伤演化数值模拟研究 [J]. 北京理工大学学报, 2022, 42(7): 733–740. doi: 10.15918/j.tbit1001-0645.2021.189LI X L, LI Q, WANG J G, et al. Numerical simulation research on impact failure and damage evolution of cemented backfill [J]. Transactions of Beijing Institute of Technology, 2022, 42(7): 733–740. doi: 10.15918/j.tbit1001-0645.2021.189 [12] 程树范, 高睿, 曾亚武, 等. 冲击作用下煤岩动态破坏机理的FDEM模拟研究 [J]. 振动与冲击, 2022, 41(19): 136–143. doi: 10.13465/j.cnki.jvs.2022.19.018CHENG S F, GAO R, ZENG Y W, et al. FDEM simulation of dynamic failure mechanism of coal rock under impact [J]. Journal of Vibration and Shock, 2022, 41(19): 136–143. doi: 10.13465/j.cnki.jvs.2022.19.018 [13] YANG L, XU W B, YILMAZ E, et al. A combined experimental and numerical study on the triaxial and dynamic compression behavior of cemented tailings backfill [J]. Engineering Structures, 2020, 219: 110957. doi: 10.1016/j.engstruct.2020.110957 [14] 袁伟, 金解放, 梁晨, 等. 混凝土主动围压SHPB试验波形数值分析 [J]. 长江科学院院报, 2018, 35(7): 141–146. doi: 10.11988/ckyyb.20170142YUAN W, JIN J F, LIANG C, et al. Numerical analysis on waveforms in split Hopkinson pressure bar tests of concrete under active confining pressures [J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(7): 141–146. doi: 10.11988/ckyyb.20170142 [15] 桑登峰, 廖强, 林宇轩, 等. 围压对珊瑚岩动态力学行为影响 [J]. 北京理工大学学报, 2022, 42(6): 588–595. doi: 10.15918/j.tbit1001-0645.2021.295SANG D F, LIAO Q, LIN Y X, et al. Study on dynamic behavior of coral-reef limestone under impact loading with confining pressure [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 588–595. doi: 10.15918/j.tbit1001-0645.2021.295 [16] 方士正, 杨仁树, 李炜煜, 等. 非静水压条件下深部岩石能量耗散规律及破坏特征试验研究 [J/OL]. 煤炭科学技术, 2022: 1−13 [2022−11−30]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13199/j.cnki.cst.2022-1504. DOI: 10.13199/j.cnki.cst.2022-1504.FANG S Z, YANG R S, LI W Y, et al. Research on energy dissipation and dynamic failure characteristics of rock under non-hydrostatic pressure condition [J/OL]. Coal Science and Technology, 2022: 1−13 [2022−11−30]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13199/j.cnki.cst.2022−1504. DOI: 10.13199/j.cnki.cst.2022-1504. [17] 凌天龙, 吴帅峰, 刘殿书, 等. 砂岩Holmquist-Johnson-Cook模型参数确定 [J]. 煤炭学报, 2018, 43(8): 2211–2216. doi: 10.13225/j.cnki.jccs.2017.1305LING T L, WU S F, LIU D S, et al. Determination of Holmquist-Johnson-Cook model parameters for sandstone [J]. Journal of China Coal Society, 2018, 43(8): 2211–2216. doi: 10.13225/j.cnki.jccs.2017.1305 [18] 张社荣, 宋冉, 王超, 等. 碾压混凝土HJC动态本构模型修正及数值验证 [J]. 振动与冲击, 2019, 38(12): 25–31. doi: 10.13465/j.cnki.jvs.2019.12.004ZHANG S R, SONG R, WANG C, et al. Modification of a dynamic constitutive model–HJC model for roller-compacted concrete and numerical verification [J]. Journal of Vibration and Shock, 2019, 38(12): 25–31. doi: 10.13465/j.cnki.jvs.2019.12.004