不同含水率下岩石材料的能量与损伤演化特征

党亚倩 吴亚敏 王团结 崔秀丽 安定乾

党亚倩, 吴亚敏, 王团结, 崔秀丽, 安定乾. 不同含水率下岩石材料的能量与损伤演化特征[J]. 高压物理学报, 2023, 37(3): 034105. doi: 10.11858/gywlxb.20220699
引用本文: 党亚倩, 吴亚敏, 王团结, 崔秀丽, 安定乾. 不同含水率下岩石材料的能量与损伤演化特征[J]. 高压物理学报, 2023, 37(3): 034105. doi: 10.11858/gywlxb.20220699
DANG Yaqian, WU Yamin, WANG Tuanjie, CUI Xiuli, AN Dingqian. Energy and Damage Evolution Characteristics of Rock Materials under Different Water Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034105. doi: 10.11858/gywlxb.20220699
Citation: DANG Yaqian, WU Yamin, WANG Tuanjie, CUI Xiuli, AN Dingqian. Energy and Damage Evolution Characteristics of Rock Materials under Different Water Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034105. doi: 10.11858/gywlxb.20220699

不同含水率下岩石材料的能量与损伤演化特征

doi: 10.11858/gywlxb.20220699
基金项目: 中建七局科技研发课题(JTZB-TJDT-D011/2022);中建七局科技计划项目(YIJC-HLGS-D140/2021)
详细信息
    作者简介:

    党亚倩(1988-),女,硕士,讲师,主要从事岩石材料的力学性质研究. E-mail:943201568@qq.com

    通讯作者:

    王团结(1989-),男,博士研究生,讲师,主要从事岩石材料的力学性质研究.E-mail:289884816@qq.com

  • 中图分类号: O347; TU45

Energy and Damage Evolution Characteristics of Rock Materials under Different Water Contents

  • 摘要: 为研究含水率对硬岩材料的力学性质和能量损伤的影响规律,对不同含水状态的砂岩开展了单轴压缩试验。结果表明:砂岩试样的峰值应力、弹性模量和脆性指数随着含水率的增大而减小,峰值应变随着含水率的增大而增大;在干燥状态下,砂岩试样在破坏之前未发生明显的塑性变形,表现出显著的脆性破坏,而在饱水状态下,砂岩试样在峰前阶段出现显著的塑性变形,破坏前出现屈服平台;砂岩试样的含水率越大,吸能能力越强,能量吸收率越小,但是能量耗散越显著;砂岩试样的含水率越小,破坏时其损伤变量越大,在干燥状态下砂岩试样的破坏具有较强的冲击倾向性。研究结果可为深部地下工程围岩的稳定性控制提供理论参考。

     

  • 图  不同含水率下砂岩的应力-应变曲线

    Figure  1.  Stress-strain curves of sandstone under different water contents

    图  砂岩试样的峰值应力随含水率的变化

    Figure  2.  Variation of peak stress of sandstone specimen with water content

    图  砂岩试样的峰值应变随含水率的变化

    Figure  3.  Variation of peak strain of sandstone specimen with water content

    图  砂岩试样的弹性模量随含水率的变化

    Figure  4.  Variation of elastic modulus of sandstone specimen with water content

    图  不同含水率下变形破坏过程中的能量演化规律

    Figure  5.  Energy evolution during deformation and failure under different water contents

    图  不同含水率下各能量的演化规律

    Figure  6.  Evolution law of each energy under different water contents

    图  不同含水率下峰值处各能量值

    Figure  7.  Energy at the peak point under different water contents

    图  峰值点处的能量耗散率

    Figure  8.  Energy dissipation rate at the peak point

    图  不同含水率下砂岩变形破坏过程中的损伤演化规律

    Figure  9.  Damage evolution law of sandstone during deformation and failure under different water contents

    图  10  不同含水率下砂岩试样的脆性指数和能量冲击指数

    Figure  10.  Index of brittleness and energy impact index of sandstone specimen under different water contents

    表  1  不同含水率下砂岩试样的$\sigma_{\rm{c}} $$\sigma_{\rm r}$$U_{{\rm{dmax}}} $

    Table  1.   $\sigma_{\rm{c}} $, $\sigma_{\rm{r}} $ and $U_{{\rm{dmax}}} $ of sandstone samples under different water contents

    wc/%σc/MPaσr/MPaUdmax/(MJ·m−3)
    072.1232.990.18
    0.09058.0814.270.25
    0.20449.2725.290.22
    0.28139.8725.620.23
    下载: 导出CSV

    表  2  不同含水率下砂岩试样的脆性指数和能量冲击指数

    Table  2.   Brittleness index and energy impact index of sandstone under different water contents

    wc/%BACF wc/%BACF
    013.164.27 0.2046.032.58
    0.0907.913.090.2814.321.76
    下载: 导出CSV

    表  3  不同含水率下砂岩试样的力学和能量参数

    Table  3.   Mechanical and energy parameters of sandstone samples under different water contents

    wc/%E/MPaσc/MPaεpBACFEt/(MJ·m−3)Ee/(MJ·m−3)Ed/(MJ·m−3)
    016.3772.050.5213.1613.160.17360.15840.0147
    0.09011.1558.240.747.917.910.18830.14940.0387
    0.2049.0849.640.846.036.030.18860.13420.0547
    0.2816.4840.170.924.324.320.18170.09590.0850
    下载: 导出CSV
  • [1] 邬爱清. 长江科学院水工岩石力学与工程应用研究进展 [J]. 长江科学院院报, 2021, 38(10): 104–111. doi: 10.11988/ckyyb.20210677

    WU A Q. Developments of rock mechanics in hydraulic engineering and their applications by Yangtze River scientific research institute [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 104–111. doi: 10.11988/ckyyb.20210677
    [2] CHEN F J, LI H X, ZHU Z Q. Energy dissipation analysis on unloading confining pressure failure process of rock material [J]. Applied Mechanics and Materials, 2012, 256: 398–401. doi: 10.4028/WWW.SCIENTIFIC.NET/AMM.256-259.398
    [3] 柳万里, 晏鄂川, 戴航, 等. 巴东组泥岩水作用的特征强度及其能量演化规律研究 [J]. 岩石力学与工程学报, 2020, 39(2): 311–326. doi: 10.13722/j.cnki.jrme.2019.0654

    LIU W L, YAN E C, DAI H, et al. Study on characteristic strength and energy evolution law of Badong formation mudstone under water effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 311–326. doi: 10.13722/j.cnki.jrme.2019.0654
    [4] 秦虎, 黄滚, 王维忠. 不同含水率煤岩受压变形破坏全过程声发射特征试验研究 [J]. 岩石力学与工程学报, 2012, 31(6): 1115–1120. doi: 10.3969/j.issn.1000-6915.2012.06.004

    QIN H, HUANG G, WANG W Z. Experimental study of acoustic emission characteristics of coal samples with different moisture contents in process of compression deformation and failure [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1115–1120. doi: 10.3969/j.issn.1000-6915.2012.06.004
    [5] TATONE B S A, ABDELAZIZ A, GRASSELLI G. Novel mechanical classification method of rock based on the uniaxial compressive strength and Brazilian disc strength [J]. Rock Mechanics and Rock Engineering, 2022, 55(4): 2503–2507. doi: 10.1007/s00603-021-02759-7
    [6] SHEN W B, YU W J, PAN B, et al. Rock mechanical failure characteristics and energy evolution analysis of coal-rock combination with different dip angles [J]. Arabian Journal of Geosciences, 2022, 15(1): 93. doi: 10.1007/S12517-021-09268-5
    [7] PERERA M S A, RANJITH P G, PETER M. Effects of saturation medium and pressure on strength parameters of Latrobe Valley brown coal: carbon dioxide, water and nitrogen saturations [J]. Energy, 2011, 36(12): 6941–6947. doi: 10.1016/j.energy.2011.09.026
    [8] PAN Z J, CONNELL L D, CAMILLERI M, et al. Effects of matrix moisture on gas diffusion and flow in coal [J]. Fuel, 2010, 89(11): 3207–3217. doi: 10.1016/j.fuel.2010.05.038
    [9] 郑文红, 施天威, 潘一山, 等. 含水率对岩石电荷感应信号影响规律研究 [J]. 岩土力学, 2022, 43(3): 659–668. doi: 10.16285/j.rsm.2021.1335

    ZHENG W H, SHI T W, PAN Y S, et al. Effects of water content on the charge induced signal of rock [J]. Rock and Soil Mechanics, 2022, 43(3): 659–668. doi: 10.16285/j.rsm.2021.1335
    [10] 胡昕, 洪宝宁, 孟云梅. 考虑含水率影响的红砂岩损伤统计模型 [J]. 中国矿业大学学报, 2007, 36(5): 609–613. doi: 10.3321/j.issn:1000-1964.2007.05.009

    HU X, HONG B N, MENG Y M. Statistical damage model of red sandstone with effect of water ratio considered [J]. Journal of China University of Mining & Technology, 2007, 36(5): 609–613. doi: 10.3321/j.issn:1000-1964.2007.05.009
    [11] 李天斌, 陈子全, 陈国庆, 等. 不同含水率作用下砂岩的能量机制研究 [J]. 岩土力学, 2015, 36(Suppl 2): 229–236. doi: 10.16285/j.rsm.2015.S2.030

    LI T B, CHEN Z Q, CHEN G Q, et al. An experimental study of energy mechanism of sandstone with different moisture contents [J]. Rock and Soil Mechanics, 2015, 36(Suppl 2): 229–236. doi: 10.16285/j.rsm.2015.S2.030
    [12] 李泓颖, 刘晓辉, 郑钰, 等. 深埋锦屏大理岩渐进破坏过程中的特征能量分析 [J]. 岩石力学与工程学报, 2022, 41(Suppl 2): 3229–3239. doi: 10.13722/j.cnki.jrme.2022.0075

    LI H Y, LIU X H, ZHENG Y, et al. Analysis of characteristic energy during the progressive failure of deep-buried marble in Jinping [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl 2): 3229–3239. doi: 10.13722/j.cnki.jrme.2022.0075
    [13] 纪洪广, 苏晓波, 权道路, 等. 受载岩石能量演化特征的研究进展 [J]. 金属矿山, 2020(4): 1–9. doi: 10.19614/j.cnki.jsks.202004001

    JI H G, SU X B, QUAN D L, et al. Research progress on energy evolution characteristics of loaded rocks [J]. Metal Mine, 2020(4): 1–9. doi: 10.19614/j.cnki.jsks.202004001
    [14] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索 [J]. 岩石力学与工程学报, 2015, 34(11): 2161–2178.

    XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161–2178.
    [15] 王圣程, 姜慧, 禄利刚, 等. 单轴压缩下不同含水率水泥混凝土的能量演化特征 [J]. 混凝土与水泥制品, 2018(7): 24–27.

    WANG S C, JIANG H, LU L G, et al. Energy evolution characteristic on cement concrete with different water content under unaxial compression [J]. China Concrete and Cement Products, 2018(7): 24–27.
    [16] 杨永杰, 马德鹏. 煤样三轴卸荷破坏的能量演化特征试验分析 [J]. 采矿与安全工程学报, 2018, 35(6): 1208–1216.

    YANG Y J, MA D P. Experimental research on energy evolution properties of coal sample failure under triaxial unloading testing [J]. Journal of Mining & Safety Engineering, 2018, 35(6): 1208–1216.
    [17] 孟召平, 潘结南, 刘亮亮, 等. 含水量对沉积岩力学性质及其冲击倾向性的影响 [J]. 岩石力学与工程学报, 2009, 28(Suppl 1): 2637–2643. doi: 10.3321/j.issn:1000-6915.2009.z1.007

    MENG Z P, PAN J N, LIU L L, et al. Influence of moisture contents on mechanical properties of sedimentary rock and its bursting potential [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Suppl 1): 2637–2643. doi: 10.3321/j.issn:1000-6915.2009.z1.007
    [18] 茅献彪, 张连英, 刘瑞雪. 高温状态下泥岩单轴蠕变特性及损伤本构关系研究 [J]. 岩土工程学报, 2013, 35(Suppl 2): 30–37.

    MAO X B, ZHANG L Y, LIU R X. Creep properties and damage constitutive relation of mudstone under uniaxial compression at high temperature [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl 2): 30–37.
    [19] 赵志刚, 高成章, 贾志闯, 等. 岩石破碎过程中能量演化的模拟分析 [J]. 矿业研究与开发, 2016, 36(11): 50–54. doi: 10.13827/j.cnki.kyyk.2016.11.011

    ZHAO Z G, GAO C Z, JIA Z C, et al. Rock crushing process simulation evolutionary mechanisms based on energy analysis [J]. Mining Research and Development, 2016, 36(11): 50–54. doi: 10.13827/j.cnki.kyyk.2016.11.011
    [20] 于少群, 李理. 低渗储层岩石的力学性质及其控制因素——以牛庄洼陷牛35块沙三中为例 [J]. 地质科学, 2021, 56(3): 845–853. doi: 10.12017/dzkx.2021.043

    YU S Q, LI L. Mechanical properties of low permeability reservoir rocks and their controlling factors: take the Third Member of Shahejie Formation of Niu-35 fault block in Niu Zhuang Sag as an example [J]. Chinese Journal of Geology, 2021, 56(3): 845–853. doi: 10.12017/dzkx.2021.043
    [21] 周学慧, 杜治利, 丁文龙, 等. 基于岩石破裂特征及能量演化的致密砂岩脆性指数优选 [J]. 中国矿业, 2020, 29(Suppl 2): 371–377.

    ZHOU X H, DU Z L, DING W L, et al. Brittleness index optimization of tight sandstone based on the characteristics of rock failure and energy evolution [J]. China Mining Magazine, 2020, 29(Suppl 2): 371–377.
    [22] 郭建卿, 苏承东. 不同煤试样冲击倾向性试验结果分析 [J]. 煤炭学报, 2009, 34(7): 897–902. doi: 10.3321/j.issn:0253-9993.2009.07.007

    GUO J Q, SU C D. Analysis on experimental results of rock burst tendency of different coal samples [J]. Journal of China Coal Society, 2009, 34(7): 897–902. doi: 10.3321/j.issn:0253-9993.2009.07.007
    [23] 宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据 [J]. 岩石力学与工程学报, 2018, 37(9): 1993–2014. doi: 10.13722/j.cnki.jrme.2018.0232

    GONG F Q, YAN J Y, LI X B. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993–2014. doi: 10.13722/j.cnki.jrme.2018.0232
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  148
  • PDF下载量:  32
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-01-23
  • 网络出版日期:  2023-03-27
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回