聚能侵彻体作用下钢-CFRP层合板的防护性能

袁浩天 刘钊 孙文豪 张之凡

袁浩天, 刘钊, 孙文豪, 张之凡. 聚能侵彻体作用下钢-CFRP层合板的防护性能[J]. 高压物理学报, 2023, 37(2): 024202. doi: 10.11858/gywlxb.20220698
引用本文: 袁浩天, 刘钊, 孙文豪, 张之凡. 聚能侵彻体作用下钢-CFRP层合板的防护性能[J]. 高压物理学报, 2023, 37(2): 024202. doi: 10.11858/gywlxb.20220698
YUAN Haotian, LIU Zhao, SUN Wenhao, ZHANG Zhifan. Protective Performance of Steel-CFRP Laminates under Sharped Charge Projectile[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024202. doi: 10.11858/gywlxb.20220698
Citation: YUAN Haotian, LIU Zhao, SUN Wenhao, ZHANG Zhifan. Protective Performance of Steel-CFRP Laminates under Sharped Charge Projectile[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024202. doi: 10.11858/gywlxb.20220698

聚能侵彻体作用下钢-CFRP层合板的防护性能

doi: 10.11858/gywlxb.20220698
基金项目: 国家自然科学基金(52271307,52192692,52061135107);爆炸科学与技术国家重点实验室开放课题(KFJJ21-09M);辽宁省兴辽英才计划高水平创新创业团队项目(XLYC1908027);中央高校基本科研业务费专项资金(DUT20TD108,DUT20RC(3)025);大连市重点领域创新团队项目(2020RT03)
详细信息
    作者简介:

    袁浩天(1998-),男,硕士研究生,主要从事聚能装药及水下爆炸研究.E-mail:yuanht_mail@163.com

    通讯作者:

    张之凡(1990-),女,博士,副教授,主要从事聚能装药、水下爆炸及舰船抗爆抗冲击性能研究.E-mail:zzf84952823@126.com

  • 中图分类号: O382.1

Protective Performance of Steel-CFRP Laminates under Sharped Charge Projectile

  • 摘要: 碳纤维增强复合材料(carbon fiber-reinforced polymer,CFRP)具有优越的抗侵彻性能,正逐渐应用于舰船抗爆抗冲击防护设计。为了研究钢-CFRP层合板在聚能侵彻体作用下的防护性能,基于任意拉格朗日-欧拉方法建立聚能装药空中爆炸对钢-CFRP层合板破坏的数值模型,探究聚能装药的空中爆炸载荷特性及其对钢-CFRP层合板的毁伤机理。采用等面密度方法,设计了CFRP作为面板、背板和夹芯层时多种钢-CFRP层合板形式,通过侵彻后侵彻体头部降速以及层合板破口大小,讨论了CFRP敷设位置对层合板防护效果的影响,给出了较优的敷设形式。在此基础上,对层合板的厚度进行优化。结果表明:CFRP-钢-CFRP夹芯结构在聚能侵彻体作用下的防护效果最佳,较佳的厚度比为4.0∶1.4∶4.0。

     

  • 图  有限元模型

    Figure  1.  Finite element model

    图  头部速度随网格数的变化

    Figure  2.  Variation of head velocity with grid number

    图  聚能侵彻体侵彻后破口的实验[25]和数值模拟结果

    Figure  3.  Experimental[25] and numerical simulation results of holes caused by shaped charge projectiles

    图  爆轰产物速度

    Figure  4.  Velocity distributions of detonation products

    图  爆轰产物作用下靶板应力响应云图(工况1)

    Figure  5.  Stress distributions of plate subjected to detonation product (case 1)

    图  侵彻体在成形过程中的速度分布(工况1)

    Figure  6.  Velocity distributions of shaped charge projectile in forming process (case 1)

    图  t=60 μs时侵彻体的速度分布

    Figure  7.  Velocity distributions of shaped charge projectile at t=60 μs

    图  侵彻体侵彻不同敷设形式层合板的头部速度曲线

    Figure  8.  Evolution of head velocities of shaped charge projectiles penetrating laminates with different laying forms

    图  工况1~工况5的 α曲线

    Figure  9.  α curve of cases 1−5

    图  10  不同敷设形式的层合板中钢板层的破口

    Figure  10.  Crevasses of steel layers of laminates with different laying forms

    图  11  不同敷设形式的层合板中CFRP层的破口

    Figure  11.  Crevasses of CFRP layers of laminates with different laying forms

    图  12  不同敷设形式的层合板中钢板层和CFRP层的β曲线

    Figure  12.  β curve of steel layers and CFRP layers in laminates with different laying forms

    图  13  t=60 μs时工况6~工况10中的侵彻体速度分布

    Figure  13.  Velocity distributions of shaped charge projectile at t=60 μs in case 6–case 10

    图  14  侵彻体侵彻不同厚度层合板时的头部速度曲线

    Figure  14.  Evolution of head velocities of shaped charge projectiles penetrating laminates with different thicknesses

    图  15  工况6~工况10的 α曲线

    Figure  15.  α curve of case 6−case 10

    图  16  不同厚度层合板中钢板层破口

    Figure  16.  Crevasses of steel layers of laminates with different thicknesses

    图  17  不同厚度层合板中的CFRP层破口

    Figure  17.  Crevasse of CFRP layers of laminates with different thicknesses

    图  18  不同厚度层合板中钢板层和CFRP层的 β 曲线

    Figure  18.  β curves of of steel layers and CFRP layers in laminates with different thicknesses

    表  1  RDX的材料模型及JWL状态方程参数[22]

    Table  1.   Parameters of RDX material model and JWL equation of state[22]

    ρ/(g·cm−3) AR/GPaBR/GPaR1R2ωDR/(km·s−1)E/(GJ·m−3)pCJ/GPa
    1.69 850184.61.30.388.311030.15
    下载: 导出CSV

    表  2  紫铜的Johnson-Cook模型及Grüneisen状态方程参数[23]

    Table  2.   Parameters of Johnson-Cook model and Grüneisen equation of state for copper[23]

    ρ/(g·cm−3)G/GPaAC/MPaBC/MPaCCmnTm/Kc/(km·s−1)S1γ0
    8.9647.790.02920.0251.090.3113603.941.491.99
    下载: 导出CSV

    表  3  空气的材料参数[23]

    Table  3.   Material parameters of air[23]

    ρ/(g·cm−3)C0C1C2C3C4C5E0/MPa
    1.29300000.40.40.25
    下载: 导出CSV

    表  4  Q235钢的材料参数[23]

    Table  4.   Material parameters of Q235 steel[23]

    ρ/(g·cm−3)EQ/GPaνσ0/MPaET/MPaC/s−1PFs
    7.832070.3235375.540.450.2
    下载: 导出CSV

    表  5  CFRP的主要材料参数[24]

    Table  5.   Material properties of CFRP[24]

    ρ/(g·cm−3)Ex/GPaEy/GPaνGxy/GPaGyz /GPa
    1.5353.8153.810.045.82.9
    Gxz/GPaXc/MPaXt/MPaYc/MPaYt/MPa
    2.9741680728800
    下载: 导出CSV

    表  6  不同工况下的钢-CFRP层合板

    Table  6.   Steel-CFRP laminates in different cases

    CaseLaminateρl/(g·cm−2) CaseLaminateρl/(g·cm−2)
    1Q235 3.0 mm2.3490 6CFRP 1.0 mm+Q235 2.6 mm+CFRP 1.0 mm2.3418
    2CFRP 5.0 mm (face plate)+Q235 2.0 mm2.33107CFRP 2.0 mm+Q235 2.2 mm+CFRP 2.0 mm2.3346
    3CFRP 5.0 mm (back plate)+Q235 2.0 mm2.33108CFRP 3.0 mm+Q235 1.8 mm+CFRP 3.0 mm2.3274
    4Q235 1.0 mm+CFRP 5.0 mm+Q235 1.0 mm2.33109CFRP 4.0 mm+Q235 1.4 mm+CFRP 4.0 mm2.3202
    5CFRP 2.5 mm+Q235 2.0 mm+CFRP 2.5 mm2.331010CFRP 5.0 mm+Q235 1.0 mm+CFRP 5.0 mm2.3130
    下载: 导出CSV
  • [1] KUMAR R R, REDDY I T, BALAJI S G, et al. Dynamic analysis of cantilever beam used carbon fiber composite for aerospace applications [J]. Materials Today: Proceedings, 2022, 68: 2079–2087. doi: 10.1016/j.matpr.2022.08.365
    [2] 李家顺. 基于LS-DYNA汽车前防撞梁仿真分析及其结构优化 [J]. 农业装备与车辆工程, 2021, 59(4): 122–126. doi: 10.3969/j.issn.1673-3142.2021.04.028

    LI J S. Simulation analysis and structural optimization of automobile front anti-collision beam based on LS-DYNA [J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(4): 122–126. doi: 10.3969/j.issn.1673-3142.2021.04.028
    [3] 李威, 郭权锋. 碳纤维复合材料在航天领域的应用 [J]. 中国光学, 2011, 4(3): 201–212. doi: 10.3969/j.issn.2095-1531.2011.03.001

    LI W, GUO Q F. Application of carbon fiber composites to cosmonautic fields [J]. Chinese Journal of Optics, 2011, 4(3): 201–212. doi: 10.3969/j.issn.2095-1531.2011.03.001
    [4] 彭露玫, 周成康, 张志勇, 等. 金属与碳纤维复合结构发射箱耐高温冲击性能 [J]. 兵工学报, 2021, 42(11): 2360–2367. doi: 10.3969/j.issn.1000-1093.2021.11.009

    PENG L M, ZHOU C K, ZHANG Z Y, et al. High-temperature shock resistance of launch container with metal and carbon fiber composite structure [J]. Acta Armamentarii, 2021, 42(11): 2360–2367. doi: 10.3969/j.issn.1000-1093.2021.11.009
    [5] 钱伯章. 船用碳纤维复合材料的发展趋势 [J]. 合成纤维, 2020, 49(7): 57–58. doi: 10.16090/j.cnki.hcxw.2020.07.031

    QIAN B Z. Development trend of marine carbon fiber composites [J]. Synthetic Fiber in China, 2020, 49(7): 57–58. doi: 10.16090/j.cnki.hcxw.2020.07.031
    [6] ZHANG Z F, WANG C, XU W L, et al. Application of a new type of annular shaped charge in penetration into underwater double-hull structure [J]. International Journal of Impact Engineering, 2022, 159: 104057. doi: 10.1016/j.ijimpeng.2021.104057
    [7] 黄龙华, 夏柳舟. “潜艇克星”: 世界反潜鱼雷概览 [J]. 环球军事, 2006(16): 48–49.

    HUANG L H, XIA L Z. Submarine star: world anti-submarine torpedo overview [J]. Global Military, 2006(16): 48–49.
    [8] 王玉, 卢熹, 张方方, 等. 反潜鱼雷战斗部对典型潜艇目标毁伤效应研究 [J]. 兵器装备工程学报, 2021, 42(12): 112–116. doi: 10.11809/bqzbgcxb2021.12.016

    WANG Y, LU X, ZHANG F F, et al. Damage effect of anti-submarine torpedo warhead on typical submarine targets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 112–116. doi: 10.11809/bqzbgcxb2021.12.016
    [9] 孙远翔, 胡皓亮, 张之凡. EFP水下成型影响因素的数值模拟 [J]. 高压物理学报, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557

    SUN Y X, HU H L, ZHANG Z F. Simulation study on influential factors of EFP underwater forming [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557
    [10] 魏明恺. 复合材料在海洋船舰中的应用 [J]. 中国战略新兴产业, 2017(4): 141–144. doi: 10.19474/j.cnki.10-1156/f.000373

    WEI M K. Application of composite materials in marine ships [J]. China Strategic Emerging Industry, 2017(4): 141–144. doi: 10.19474/j.cnki.10-1156/f.000373
    [11] BANIK A, ZHANG C, PANYATHONG D, et al. Effect of equienergetic low-velocity impact on CFRP with surface ice in low temperature arctic conditions [J]. Composites Part B: Engineering, 2022, 236: 109850. doi: 10.1016/j.compositesb.2022.109850
    [12] HU L L, LI M Y, YILIYAER T, et al. Strengthening of cracked DH36 steel plates by CFRP sheets under fatigue loading at low temperatures [J]. Ocean Engineering, 2022, 243: 110203. doi: 10.1016/j.oceaneng.2021.110203
    [13] 刘姗姗, 刘亚军, 张英杰, 等. 碳纤维-泡沫铝夹芯板低速冲击响应 [J]. 高压物理学报, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872

    LIU S S, LIU Y J, ZHANG Y J, et al. Low-velocity impact response of carbon fiber-aluminum foam sandwich plate [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872
    [14] 王松, 李应刚, 黄鑫华, 等. 碳纤维增强复合材料夹芯板的砰击损伤特性 [J]. 高压物理学报, 2023, 37(1): 014204. doi: 10.11858/gywlxb.20220653

    WANG S, LI Y G, HUANG X H, et al. Damage characteristics of carbon fiber reinforced composite sandwich panels subjected to water slamming loads [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014204. doi: 10.11858/gywlxb.20220653
    [15] 左新龙, 唐文献. 金属-CFRP复合型柱壳屈曲特性试验及数值研究 [J/OL]. 复合材料学报, (2022−08−12) [2022−11−24]. https://doi.org/10.13801/j.cnki.fhclxb.20220811.006.

    ZUO X L, TANG W X. Experimental and numerical study on buckling behaviour of steel-CFRP hybrid cylindrical shells [J/OL]. Acta Materiae Compositae Sinica, (2022−08−12) [2022−11−24]. https://doi.org/10.13801/j.cnki.fhclxb.20220811.006.
    [16] 周昊, 郭锐, 刘荣忠. 碳纤维增强复合材料方形蜂窝夹层结构水中冲击波作用下的能量特性数值模拟 [J]. 兵工学报, 2018, 39(Suppl 1): 84–90. doi: 10.3969/j.issn.1000-1093.2018.S1.014

    ZHOU H, GUO R, LIU R Z. Numerical simulation on energy absorbing properties of carbon fiber reinforced composite sandwich plates with square honeycomb cores subjected to underwater shock waves [J]. Acta Armamentarii, 2018, 39(Suppl 1): 84–90. doi: 10.3969/j.issn.1000-1093.2018.S1.014
    [17] 张弩, 于馨, 明付仁. 复合材料层合板在水下多层防护结构中的抗爆效能 [J]. 兵工学报, 2021, 42(Suppl 1): 135–141. doi: 10.3969/j.issn.1000-1093.2021.S1.017

    ZHANG N, YU X, MING F R. Anti-explosion performance of composite laminates in underwater multi-layer defensive structure [J]. Acta Armamentarii, 2021, 42(Suppl 1): 135–141. doi: 10.3969/j.issn.1000-1093.2021.S1.017
    [18] 周越松, 梁森, 王得盼, 等. 阻尼材料/纤维层合板复合靶板抗冲击性能研究 [J]. 兵器装备工程学报, 2022, 43(1): 243–248. doi: 10.11809/bqzbgcxb2022.01.038

    ZHOU Y S, LIANG S, WANG D P, et al. Impact resistance behavior of damping material/fiber laminate composite target [J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 243–248. doi: 10.11809/bqzbgcxb2022.01.038
    [19] 谢文波, 张伟, 姜雄文. 钢球斜侵彻碳纤维复合材料板的实验研究 [J]. 爆炸与冲击, 2018, 38(3): 647–653. doi: 10.11883/bzycj-2016-0289

    XIE W B, ZHANG W, JIANG X W. Oblique penetration on CFRPs by steel sphere [J]. Explosion and Shock Waves, 2018, 38(3): 647–653. doi: 10.11883/bzycj-2016-0289
    [20] 秦溶蔓, 朱波, 乔琨, 等. 复合结构碳纤维防弹板的防弹性能仿真 [J]. 工程科学学报, 2021, 43(10): 1346–1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001

    QIN R M, ZHU B, QIAO K, et al. Simulation study of the protective performance of composite structure carbon fiber bulletproof board [J]. Chinese Journal of Engineering, 2021, 43(10): 1346–1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001
    [21] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020.

    XIN C L, XUE Z Q, TU J, et al. Manual of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2020.
    [22] 刘武, 夏治园, 马刘博, 等. 预控破片战斗部爆炸飞散数值模拟 [J]. 火工品, 2020(4): 48–51. doi: 10.3969/j.issn.1003-1480.2020.04.013

    LIU W, XIA Z Y, MA L B, et al. Numerical simulation of explosion dispersion in pre-controlled fragment warhead [J]. Initiators & Pyrotechnics, 2020(4): 48–51. doi: 10.3969/j.issn.1003-1480.2020.04.013
    [23] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005.

    SHI D Y, LI Y C, ZHANG S M. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. Beijing: Tsinghua University Press, 2005.
    [24] 何兆亨, 刘颖, 李能华, 等. 基于LS-DYNA的CFRP方管轴向压溃仿真方法研究 [J]. 玻璃钢/复合材料, 2019(9): 20–25. doi: 10.3969/j.issn.1003-0999.2019.09.003

    HE Z H, LIU Y, LI N H, et al. Simulation methods for axial crushing CFRP tubes in LS-DYNA [J]. Composites Science and Engineering, 2019(9): 20–25. doi: 10.3969/j.issn.1003-0999.2019.09.003
    [25] 黄洪. 聚能装药水下爆炸对目标的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2021.

    HUANG H. Damage characteristics of shaped charge under explosion to target [D]. Shenyang: Shenyang Ligong University, 2021.
    [26] DEMIR T, ÜBEYLI M, YILDIRIM R O. Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile [J]. Materials & Design, 2008, 29(10): 2009–2016.
    [27] 钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984.

    QIAN W C. Perforation mechanics [M]. Beijing: National Defense Industry Press, 1984.
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  105
  • PDF下载量:  57
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-01-07
  • 网络出版日期:  2023-03-25
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回