Protective Performance of Steel-CFRP Laminates under Sharped Charge Projectile
-
摘要: 碳纤维增强复合材料(carbon fiber-reinforced polymer,CFRP)具有优越的抗侵彻性能,正逐渐应用于舰船抗爆抗冲击防护设计。为了研究钢-CFRP层合板在聚能侵彻体作用下的防护性能,基于任意拉格朗日-欧拉方法建立聚能装药空中爆炸对钢-CFRP层合板破坏的数值模型,探究聚能装药的空中爆炸载荷特性及其对钢-CFRP层合板的毁伤机理。采用等面密度方法,设计了CFRP作为面板、背板和夹芯层时多种钢-CFRP层合板形式,通过侵彻后侵彻体头部降速以及层合板破口大小,讨论了CFRP敷设位置对层合板防护效果的影响,给出了较优的敷设形式。在此基础上,对层合板的厚度进行优化。结果表明:CFRP-钢-CFRP夹芯结构在聚能侵彻体作用下的防护效果最佳,较佳的厚度比为4.0∶1.4∶4.0。Abstract: Carbon fiber reinforced polymer (CFRP) is gradually applied to the design of anti-explosion and anti-shock engineering of warships due to its excellent anti-penetration performance. In order to study the protective performance of steel-CFRP laminates under the action of shaped charge projectile, numerical models of the damage analyses of steel-CFRP laminates under air explosion of shaped charge were established based on the arbitrary Lagrangian-Eulerian (ALE) method. The load characteristics and corresponding damage mechanism to steel-CFRP laminates were investigated. According to equal surface density method, various forms of steel-CFRP laminates with CFRP as face plate, back plate and sandwich core layer were designed. The anti-penetration performance of laminates with CFRP at different positions was compared and analyzed through the deceleration of the shaped charge projectile head and the size of the laminate crevasse, and a better laying form was obtained. On this basis, the thickness of the laminate was optimized. The results show that the three-layer sandwich structure of CFRP-steel-CFRP performs the best protective effect, and its better thickness ratio is 4.0∶1.4∶4.0.
-
ρ/(g·cm−3) AR/GPa BR/GPa R1 R2 ω DR/(km·s−1) E/(GJ·m−3) pCJ/GPa 1.69 850 18 4.6 1.3 0.38 8.31 10 30.15 表 2 紫铜的Johnson-Cook模型及Grüneisen状态方程参数[23]
Table 2. Parameters of Johnson-Cook model and Grüneisen equation of state for copper[23]
ρ/(g·cm−3) G/GPa AC/MPa BC/MPa CC m n Tm/K c/(km·s−1) S1 γ0 8.96 47.7 90.0 292 0.025 1.09 0.31 1360 3.94 1.49 1.99 ρ/(g·cm−3) C0 C1 C2 C3 C4 C5 E0/MPa 1.293 0 0 0 0 0.4 0.4 0.25 ρ/(g·cm−3) EQ/GPa ν σ0/MPa ET/MPa C/s−1 P Fs 7.83 207 0.3 235 375.5 40.4 5 0.2 ρ/(g·cm−3) Ex/GPa Ey/GPa ν Gxy/GPa Gyz /GPa 1.53 53.81 53.81 0.04 5.8 2.9 Gxz/GPa Xc/MPa Xt/MPa Yc/MPa Yt/MPa 2.9 741 680 728 800 表 6 不同工况下的钢-CFRP层合板
Table 6. Steel-CFRP laminates in different cases
Case Laminate ρl/(g·cm−2) Case Laminate ρl/(g·cm−2) 1 Q235 3.0 mm 2.3490 6 CFRP 1.0 mm+Q235 2.6 mm+CFRP 1.0 mm 2.3418 2 CFRP 5.0 mm (face plate)+Q235 2.0 mm 2.3310 7 CFRP 2.0 mm+Q235 2.2 mm+CFRP 2.0 mm 2.3346 3 CFRP 5.0 mm (back plate)+Q235 2.0 mm 2.3310 8 CFRP 3.0 mm+Q235 1.8 mm+CFRP 3.0 mm 2.3274 4 Q235 1.0 mm+CFRP 5.0 mm+Q235 1.0 mm 2.3310 9 CFRP 4.0 mm+Q235 1.4 mm+CFRP 4.0 mm 2.3202 5 CFRP 2.5 mm+Q235 2.0 mm+CFRP 2.5 mm 2.3310 10 CFRP 5.0 mm+Q235 1.0 mm+CFRP 5.0 mm 2.3130 -
[1] KUMAR R R, REDDY I T, BALAJI S G, et al. Dynamic analysis of cantilever beam used carbon fiber composite for aerospace applications [J]. Materials Today: Proceedings, 2022, 68: 2079–2087. doi: 10.1016/j.matpr.2022.08.365 [2] 李家顺. 基于LS-DYNA汽车前防撞梁仿真分析及其结构优化 [J]. 农业装备与车辆工程, 2021, 59(4): 122–126. doi: 10.3969/j.issn.1673-3142.2021.04.028LI J S. Simulation analysis and structural optimization of automobile front anti-collision beam based on LS-DYNA [J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(4): 122–126. doi: 10.3969/j.issn.1673-3142.2021.04.028 [3] 李威, 郭权锋. 碳纤维复合材料在航天领域的应用 [J]. 中国光学, 2011, 4(3): 201–212. doi: 10.3969/j.issn.2095-1531.2011.03.001LI W, GUO Q F. Application of carbon fiber composites to cosmonautic fields [J]. Chinese Journal of Optics, 2011, 4(3): 201–212. doi: 10.3969/j.issn.2095-1531.2011.03.001 [4] 彭露玫, 周成康, 张志勇, 等. 金属与碳纤维复合结构发射箱耐高温冲击性能 [J]. 兵工学报, 2021, 42(11): 2360–2367. doi: 10.3969/j.issn.1000-1093.2021.11.009PENG L M, ZHOU C K, ZHANG Z Y, et al. High-temperature shock resistance of launch container with metal and carbon fiber composite structure [J]. Acta Armamentarii, 2021, 42(11): 2360–2367. doi: 10.3969/j.issn.1000-1093.2021.11.009 [5] 钱伯章. 船用碳纤维复合材料的发展趋势 [J]. 合成纤维, 2020, 49(7): 57–58. doi: 10.16090/j.cnki.hcxw.2020.07.031QIAN B Z. Development trend of marine carbon fiber composites [J]. Synthetic Fiber in China, 2020, 49(7): 57–58. doi: 10.16090/j.cnki.hcxw.2020.07.031 [6] ZHANG Z F, WANG C, XU W L, et al. Application of a new type of annular shaped charge in penetration into underwater double-hull structure [J]. International Journal of Impact Engineering, 2022, 159: 104057. doi: 10.1016/j.ijimpeng.2021.104057 [7] 黄龙华, 夏柳舟. “潜艇克星”: 世界反潜鱼雷概览 [J]. 环球军事, 2006(16): 48–49.HUANG L H, XIA L Z. Submarine star: world anti-submarine torpedo overview [J]. Global Military, 2006(16): 48–49. [8] 王玉, 卢熹, 张方方, 等. 反潜鱼雷战斗部对典型潜艇目标毁伤效应研究 [J]. 兵器装备工程学报, 2021, 42(12): 112–116. doi: 10.11809/bqzbgcxb2021.12.016WANG Y, LU X, ZHANG F F, et al. Damage effect of anti-submarine torpedo warhead on typical submarine targets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 112–116. doi: 10.11809/bqzbgcxb2021.12.016 [9] 孙远翔, 胡皓亮, 张之凡. EFP水下成型影响因素的数值模拟 [J]. 高压物理学报, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557SUN Y X, HU H L, ZHANG Z F. Simulation study on influential factors of EFP underwater forming [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557 [10] 魏明恺. 复合材料在海洋船舰中的应用 [J]. 中国战略新兴产业, 2017(4): 141–144. doi: 10.19474/j.cnki.10-1156/f.000373WEI M K. Application of composite materials in marine ships [J]. China Strategic Emerging Industry, 2017(4): 141–144. doi: 10.19474/j.cnki.10-1156/f.000373 [11] BANIK A, ZHANG C, PANYATHONG D, et al. Effect of equienergetic low-velocity impact on CFRP with surface ice in low temperature arctic conditions [J]. Composites Part B: Engineering, 2022, 236: 109850. doi: 10.1016/j.compositesb.2022.109850 [12] HU L L, LI M Y, YILIYAER T, et al. Strengthening of cracked DH36 steel plates by CFRP sheets under fatigue loading at low temperatures [J]. Ocean Engineering, 2022, 243: 110203. doi: 10.1016/j.oceaneng.2021.110203 [13] 刘姗姗, 刘亚军, 张英杰, 等. 碳纤维-泡沫铝夹芯板低速冲击响应 [J]. 高压物理学报, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872LIU S S, LIU Y J, ZHANG Y J, et al. Low-velocity impact response of carbon fiber-aluminum foam sandwich plate [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872 [14] 王松, 李应刚, 黄鑫华, 等. 碳纤维增强复合材料夹芯板的砰击损伤特性 [J]. 高压物理学报, 2023, 37(1): 014204. doi: 10.11858/gywlxb.20220653WANG S, LI Y G, HUANG X H, et al. Damage characteristics of carbon fiber reinforced composite sandwich panels subjected to water slamming loads [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014204. doi: 10.11858/gywlxb.20220653 [15] 左新龙, 唐文献. 金属-CFRP复合型柱壳屈曲特性试验及数值研究 [J/OL]. 复合材料学报, (2022−08−12) [2022−11−24]. https://doi.org/10.13801/j.cnki.fhclxb.20220811.006.ZUO X L, TANG W X. Experimental and numerical study on buckling behaviour of steel-CFRP hybrid cylindrical shells [J/OL]. Acta Materiae Compositae Sinica, (2022−08−12) [2022−11−24]. https://doi.org/10.13801/j.cnki.fhclxb.20220811.006. [16] 周昊, 郭锐, 刘荣忠. 碳纤维增强复合材料方形蜂窝夹层结构水中冲击波作用下的能量特性数值模拟 [J]. 兵工学报, 2018, 39(Suppl 1): 84–90. doi: 10.3969/j.issn.1000-1093.2018.S1.014ZHOU H, GUO R, LIU R Z. Numerical simulation on energy absorbing properties of carbon fiber reinforced composite sandwich plates with square honeycomb cores subjected to underwater shock waves [J]. Acta Armamentarii, 2018, 39(Suppl 1): 84–90. doi: 10.3969/j.issn.1000-1093.2018.S1.014 [17] 张弩, 于馨, 明付仁. 复合材料层合板在水下多层防护结构中的抗爆效能 [J]. 兵工学报, 2021, 42(Suppl 1): 135–141. doi: 10.3969/j.issn.1000-1093.2021.S1.017ZHANG N, YU X, MING F R. Anti-explosion performance of composite laminates in underwater multi-layer defensive structure [J]. Acta Armamentarii, 2021, 42(Suppl 1): 135–141. doi: 10.3969/j.issn.1000-1093.2021.S1.017 [18] 周越松, 梁森, 王得盼, 等. 阻尼材料/纤维层合板复合靶板抗冲击性能研究 [J]. 兵器装备工程学报, 2022, 43(1): 243–248. doi: 10.11809/bqzbgcxb2022.01.038ZHOU Y S, LIANG S, WANG D P, et al. Impact resistance behavior of damping material/fiber laminate composite target [J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 243–248. doi: 10.11809/bqzbgcxb2022.01.038 [19] 谢文波, 张伟, 姜雄文. 钢球斜侵彻碳纤维复合材料板的实验研究 [J]. 爆炸与冲击, 2018, 38(3): 647–653. doi: 10.11883/bzycj-2016-0289XIE W B, ZHANG W, JIANG X W. Oblique penetration on CFRPs by steel sphere [J]. Explosion and Shock Waves, 2018, 38(3): 647–653. doi: 10.11883/bzycj-2016-0289 [20] 秦溶蔓, 朱波, 乔琨, 等. 复合结构碳纤维防弹板的防弹性能仿真 [J]. 工程科学学报, 2021, 43(10): 1346–1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001QIN R M, ZHU B, QIAO K, et al. Simulation study of the protective performance of composite structure carbon fiber bulletproof board [J]. Chinese Journal of Engineering, 2021, 43(10): 1346–1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001 [21] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020.XIN C L, XUE Z Q, TU J, et al. Manual of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2020. [22] 刘武, 夏治园, 马刘博, 等. 预控破片战斗部爆炸飞散数值模拟 [J]. 火工品, 2020(4): 48–51. doi: 10.3969/j.issn.1003-1480.2020.04.013LIU W, XIA Z Y, MA L B, et al. Numerical simulation of explosion dispersion in pre-controlled fragment warhead [J]. Initiators & Pyrotechnics, 2020(4): 48–51. doi: 10.3969/j.issn.1003-1480.2020.04.013 [23] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005.SHI D Y, LI Y C, ZHANG S M. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. Beijing: Tsinghua University Press, 2005. [24] 何兆亨, 刘颖, 李能华, 等. 基于LS-DYNA的CFRP方管轴向压溃仿真方法研究 [J]. 玻璃钢/复合材料, 2019(9): 20–25. doi: 10.3969/j.issn.1003-0999.2019.09.003HE Z H, LIU Y, LI N H, et al. Simulation methods for axial crushing CFRP tubes in LS-DYNA [J]. Composites Science and Engineering, 2019(9): 20–25. doi: 10.3969/j.issn.1003-0999.2019.09.003 [25] 黄洪. 聚能装药水下爆炸对目标的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2021.HUANG H. Damage characteristics of shaped charge under explosion to target [D]. Shenyang: Shenyang Ligong University, 2021. [26] DEMIR T, ÜBEYLI M, YILDIRIM R O. Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile [J]. Materials & Design, 2008, 29(10): 2009–2016. [27] 钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984.QIAN W C. Perforation mechanics [M]. Beijing: National Defense Industry Press, 1984.