Numerical Simulation on Optimization of Extrusion Blasting Parameters for Residual Ore Recovery
-
摘要: 为减少回采过程中残留顶底柱资源浪费,以赤峰柴胡栏子金矿为研究对象,基于LS-DYNA有限元软件,建立挤压爆破崩落放矿回采底柱数值模型,根据0.7、0.8、1.0 m 3种最小抵抗线和0.8、0.9、1.0 m 3种孔距设计9种方案,通过分析炮孔爆破过程中爆炸裂纹扩展与压力演化、有效应力和有效塑性应变时程曲线以及矿石的损伤情况,获取各方案的评判指标。采用模糊层次分析法构建目标相对优属度矩阵和模糊判断矩阵,通过综合评判选出最佳的爆破方案。结果表明:最小抵抗线取0.7 m、孔间距取0.9 m为挤压爆破崩落放矿回采底柱的最佳爆破参数。现场试验结果表明,使用优化后的爆破参数获得的爆破效果更好。Abstract: In order to reduce the waste of residual top and bottom pillars resources in the recovery process of Chaihulanzi gold mine, a numerical model of extrusion blasting was established based on LS-DYNA finite element software. According to the three minimum burden of 0.7, 0.8 and 1.0 m, and the three hole spacings of 0.8, 0.9 and 1.0 m, nine cases were designed. And the evaluation indicators of each case were obtained by analyzing the blasting crack propagation and pressure evolution, effective stress and effective plastic strain varying with time and ore damage during the blasting process. The fuzzy analytic hierarchy process (F-AHP) was used to construct the target relative superiority matrix and fuzzy judgment matrix, and the best blasting case was selected by a comprehensive evaluation. The results show that the minimum burden is 0.7 m and the hole spacing is 0.9 m, which is the optimal blasting parameter combination for extrusion blasting. The field test results show that the blasting effect is better with the optimized blasting parameters.
-
夹芯结构由于具有较好的吸能缓冲性能以及较高的比强度和比刚度,被广泛应用于航空航天、交通运输、航海等领域。近年来随着对夹芯板研究的不断深入,提出了各种桁架夹芯和褶皱型夹芯等形式。其中,层级结构思想引起了众多学者的关注。Lakes[1]通过研究发现,层级结构与非层级结构相比具有更加显著的刚度和强度,同时也具有足够的稳定性及可靠性。Zhang等[2-3]通过梯形波纹板夹芯结构的静态压缩和低速冲击实验,研究了不同芯层材料、不同载荷下结构的能量吸收和变形过程,结果表明不同芯层材料和冲击能量下结构的能量吸收性能不同。Hou等[4]对不同层数的梯形夹芯板结构进行了实验研究,发现不同层数结构的能量吸收性能不同。Meza等[5]对多层级桁架结构的演变模式进行了分析,提出了几种不同结构的破坏形式和变形模式。Kooistra等[6]研究了层级波纹板结构的6种失效模式,并给出了结构在不同相对密度及角度下的破坏机理图。Velea等[7]提出了一种制备二级夹芯结构的方法,将一级波纹板结构芯层替换为多孔填充芯层,通过实验和理论分析发现,二级结构有着良好的刚度和强度。Wu等[8]将金字塔型夹芯结构的芯层替换为层级夹芯结构,理论推导出了结构的等效刚度,通过实验研究了芯层几何参数对结构变形模式的影响,并总结出结构的6种不同变形模式。Wu等[9]设计了二级金字塔形夹芯结构,进行了理论分析和数值模拟,结果表明二级芯层结构具有较好的强度和稳定性。Liu等[10]将传统格栅夹芯结构芯层板替换为蜂窝夹芯结构,通过实验研究和数值模拟研究发现,在压缩载荷下二级芯层结构有着较好的能量吸收性能和稳定的变形性能,在轻量化和能量吸收方面具有更好的工程应用前景。
多孔结构及蜂窝结构有着良好的力学性能和能量吸收性能[11]。Jing等[12]通过实验研究了3种不同多孔芯层夹芯板结构在脉冲载荷下夹芯板的变形模式,结果表明不同芯层夹芯结构的变形模式不同,芯层和面板尺寸不同的夹芯结构的力学性能不同。Chen等[13-14]根据层级蜂窝结构的设计理论设计了不同芯层形式的层级蜂窝结构,并由理论分析得到结构变形模式,利用有限元对结构变形模式进行了验证,与传统蜂窝结构相比,层级蜂窝结构具有更好的能量吸收性能。Yin[15]、Qiao[16]等利用有限元软件对层级蜂窝结构进行了数值模拟,研究结果表明层级蜂窝结构的力学性能远优于传统蜂窝。
已有的研究主要集中于传统波纹板夹芯结构和层级蜂窝结构,关于多层级夹芯结构的力学性能与能量吸收的研究较少。本研究基于波纹板夹芯结构,设计了3种二级波纹板夹芯结构,通过理论分析和数值模拟相结合的方法研究一级和二级夹芯结构的变形模式与能量吸收性能,理论预测结构的临界失效载荷;建立不同芯层层数的二级波纹板夹芯结构的有限元模型,研究不同芯层厚度对多层级波纹板夹芯结构变形模式和能量吸收性能的影响,并与传统的一级夹芯波纹板结构进行对比,分析其比吸能与结构效率。
1. 层级夹芯结构的芯层设计和理论分析
1.1 芯层结构设计
根据层级蜂窝结构的设计理论,将一级梯形波纹板夹芯结构的芯层替换为三角形多孔夹芯结构,共设计了3种芯层结构,如图1所示。图1(a)为一级波纹板夹芯结构的芯层,斜板长度为la,顶板长度为l,斜板角度为
ω ,芯层板厚度为ta;二级结构的芯层如图1(b)、图1(c)和图1(d)所示,其中图1(b)为二级单层结构,图1(c)和图1(d)分别为二级双层和三层结构,二级结构芯层由大支撑面板和小支撑构成,水平方向小支撑为横向小支撑。二级结构中不同层数结构的尺寸参数相同,斜向大支撑面板长度为la,厚度为ta,小支撑长度为lb,厚度为tb,小支撑与外板角度均为θ ,外板与水平方向夹角为ω 。结构垂直于纸面方向的厚度为30 mm。1.2 理论分析
小支撑厚度与大支撑面板厚度相同的结构模型如图2所示,在外部载荷Fx和Fy作用下考虑横向小支撑的变形,基于小变形假设,由受力分析可以得到结构变形和力之间的关系,通过几何分析可以得到合力与变形之间的关系
{Fx2=Fncosω+FtsinωFy2=Fnsinω−Ftcosω (1) {δx=δncosω+δtsinωδy=δnsinω−δtcosω (2) 式中:Fx和Fy分别为沿x轴和y轴的外部载荷,
δx 和δy 为沿x轴和y轴的变形,Fn和Ft分别为夹芯夹层在外部载荷下的轴向压缩分量和剪切分量,δn 和δt 分别为夹芯夹层的轴向变形和剪切变形。当只有Fx作用时,
δy =0,δx ≠0,此时有Fn=EAδnl=Fx2cosω (3) δn=FnlEA (4) 式中:EA为夹芯夹层截面的抗拉刚度。由结构几何关系可知
δx=δncosω (5) 当只有Fy作用时,
δy ≠0,δx =0,此时有Fn=EAδnl=Fy2sinω (6) 同样有
δy=δnsinω (7) 当结构芯层为二级结构时,如图2(d)所示,(1)式~(7)式仍然成立。根据文献[17]给出的不同尺寸比下结构的失效机制,当
lb/la>√εy/πsinθ (其中εy 为材料屈服应变)时层级结构出现大支撑面板塑性屈服的失效模式。本研究中结构模型的尺寸满足上述条件,因此失效模式为大支撑面板发生塑性屈服,即大支撑面板达到材料屈服应力时结构失效。由(1)式和(2)式可得单胞结构大支撑面板在y方向上发生塑性屈服时结构的合力Fy′=(2n+2)σybtasinω (8) 式中:n为二级结构层数,b为结构垂直于纸面方向的厚度,σy为屈服应力。
根据结构变形模式,考虑横向小支撑的变形,如图3所示,Fb为横向小支撑在y方向的力,
δb 为δn 在y方向的分量,由此可知δb=Fbl3b3D (9) 弯曲刚度
D=Et3b12(1−ν2) (10) 式中:E为弹性模量,
ν 为泊松比。由此可以得到Fb=2nσyt3bsinω4(1−ν2)l2b (11) 式中:tb和lb分别为二级结构芯层小支撑厚度和长度。二级结构单胞在y方向的合力为
Fy=Fy′+Fb (12) 2. 有限元模型
有限元模型主要包括3部分:刚性压板、刚性支撑底板和波纹板夹芯结构。波纹板夹芯结构由芯层和上、下面板构成,上、下面板设置为刚体,厚度为2 mm。图4为二级双层结构有限元模型。波纹板夹芯结构和下部底板采用壳单元,刚性压板采用实体单元。刚性压板速度V=1 m/s,下部刚性底板固定,中部波纹板夹芯结构芯层与上、下两面板之间采用绑定约束。结构材料为铝合金6061-T6,材料参数如表1所示,其中
ρ 为密度。图5为材料应力-应变曲线[6]。结构单元类型采用四节点线性缩减积分壳单元(S4R),单元特征长度L=1 mm。芯层和上、下面板为自接触,刚性压板与上面板、底板与下面板为面面接触,静摩擦系数和动摩擦系数分别为0.20和0.15[18]。表 1 6061-T6铝合金材料性能Table 1. Material properties of aluminum 6061-T6Material ρ/(g·cm–3) σy/MPa E/GPa ν Al 6061-T6 2.700 251 69 0.33 2.1 准静态分析
利用LS-DYNA进行准静态分析时[19]:首先在模拟过程中结构动能要相对于内能较小,其次结构的力-位移曲线相对于速度的变化是稳定的。如图6(a)所示,结构在压板速度为0.5 m/s和1.0 m/s时动能相对于内能较小,结构整体内能受速度变化的影响较小;图6(b)为结构在压板速度为0.5 m/s和1.0 m/s时的力-位移曲线,可以看出两条曲线的重合度较高,速度变化对结构力-位移曲线的影响较小。通过对结构进行网格敏感性验证,并考虑到计算时间等因素,计算时取压板的速度为1.0 m/s,网格单元尺寸为1 mm。
2.2 能量吸收指标
为了评估结构的能量吸收性能[20],选取总能量吸收(EA)、平均载荷(Pm)、比吸能(
ξEA )、载荷效率(AE)4个评价指标。总能量吸收EA为结构在变形过程中吸收的能量
EA=∫δ0F(x)dx (13) 式中:
δ 为结构的变形位移(取δ =70 mm),F(x)为压缩过程中的瞬时载荷。平均载荷Pm定义为单位变形长度的能量吸收
Pm=EA/δ (14) 比吸能
ξEA 定义为结构单位质量的能量吸收ξEA=EA/m (15) 式中:m为结构总质量。比吸能越大,结构的能量吸收性能越好。
载荷效率定义为平均载荷与峰值载荷的比值
AE=Pm/Pk (16) 式中:Pk为峰值载荷。较好的吸能结构应该具有较大的载荷效率,并且力-位移曲线波动较小。
3. 模拟结果与分析
3.1 芯层板厚度的影响
建立一级和二级结构模型,其中一级结构芯层壁厚为2 mm,二级结构模型中ta=tb,即二级结构内部小支撑厚度与外部大支撑面板厚度相同。层级结构芯层板厚度分别为0.565、0.75、1.00、1.25 mm,结构几何参数如表2所示。图7给出了一级和二级层级结构在不同芯层板厚度下的力-位移曲线。由图7可知,二级结构平台力明显高于一级结构。一级结构在靠近芯层上部产生塑性铰,随着变形的增大未产生新的塑性铰,力-位移曲线变化平稳。二级结构随着变形增大发生折叠塑性变形,力-位移曲线会随之发生波动;在芯层厚度为1.25 mm时二级单层结构由于变形模式发生变化,力-位移曲线发生波动而随之上升;随着二级结构层数的增加,结构平台力增大;随着二级结构厚度的增大,其平台力增大。
表 2 模型尺寸Table 2. Size parameters of the modelType l/mm la/mm lb/mm ta/mm tb/mm θ/(°) ω/(°) First order 50 100 2 60 Second order-1 50 100 10 0.565/0.75/1.00/1.25 0.565/0.75/1.00/1.25 60 60 Second order-2 50 100 10 0.565/0.75/1.00/1.25 0.565/0.75/1.00/1.25 60 60 Second order-3 50 100 10 0.565/0.75/1.00/1.25 0.565/0.75/1.00/1.25 60 60 图8所示为不同芯层厚度下结构失效载荷理论值与模拟值的对比。对于数值模拟结果,当结构的承载力达到峰值时认为结构失效,即取力-位移曲线上的峰值载荷为结构失效载荷,可以看出理论值与模拟值吻合较好。当结构厚度为0.565 mm时,由于其厚度较小,在压缩载荷下的变形模式受屈曲影响较大,故理论值较模拟值偏大;当结构厚度为1.25 mm时,小支撑端部变形受边界条件的影响较大,理论值相对于模拟值偏小。
3.2 变形模式
图9所示为芯层板厚度t=2 mm时一级结构在不同应变下的变形模式,应变为结构在受载荷方向上的变形位移与结构上、下两面板之间原始距离之比。由图9可知:一级结构首先发生屈曲,在靠近芯层斜支撑上部产生塑性铰,随着变形的增大,结构发生失稳,从而产生非对称变形。图10所示为二级结构在应变为0.3时不同芯层厚度下的变形模式,可以看出:当厚度较小时,结构的变形发生在整体斜支撑与整体水平支撑的交界处,整体斜支撑内部的小支撑发生逐层折叠的塑性变形;当芯层厚度为1.25 mm时,结构斜支撑整体产生塑性铰而发生非对称变形;厚度变化对二级双层和三层结构的变形模式影响较小。在芯层厚度较小时,二级结构主要为小支撑整体逐层发生塑性变形,从而有更多能量转换为非弹性能,提高了结构整体的能量吸收能力。
3.3 能量吸收性能分析
二级结构变形模式主要为小支撑逐层折叠的塑性变形,相对于一级结构,其在变形过程中小支撑不断发生塑性变形产生塑性铰,从而有更多的能量转换为非弹性能,提高了结构的能量吸收性能。图11为不同芯层厚度结构的比吸能柱状图。由图11可知:层级波纹板夹芯结构的比吸能高于传统波纹板夹芯结构;随着结构芯层厚度增大,结构的比吸能不断提高;由于二级单层结构变形模式的变化,芯层厚度较小时二级单层结构的比吸能高于二级双层及三层结构,厚度较大时二级单层结构的比吸能低于二级双层及三层结构;二级双层结构的比吸能略高于二级三层结构。
图12为结构载荷效率随芯层厚度的变化关系。随着芯层厚度的增大,结构的载荷效率提高,二级单层结构由于变形模式的变化,载荷效率发生波动。由于二级单层结构在芯层厚度为1.25 mm时结构变形模式为斜支撑整体发生失稳,相对于小支撑发生折叠变形时其能量吸收性能降低,从力-位移曲线可以看出,结构平台力减小导致结构的载荷效率下降。二级双层和三层结构的载荷效率不断增加,二级三层结构的载荷效率高于二级双层结构。
4. 结 论
设计了不同层数的层级波纹板夹芯结构,利用数值模拟方法研究了在压缩载荷下层级夹芯结构的变形规律与能量吸收性能,理论推导了结构临界失效载荷公式;分析了结构参数对其变形模式和能量吸收性能的影响,并与一级结构进行了对比分析,得到如下研究结果。
(1)理论分析得到的结构失效载荷与数值模拟结果吻合较好。
(2)在准静态压缩载荷作用下,一级结构首先发生屈曲,随着变形增大,结构发生失稳而产生非对称变形;二级单层结构在厚度为1.25 mm时由于芯层整体产生塑性铰而失稳;二级双层和二级三层结构在整体斜支撑与整体水平支撑的交界处,整体斜支撑内部的小支撑发生逐层折叠的塑性变形。
(3)二级波纹板夹芯结构的比吸能显著大于一级结构;二级结构芯层小支撑发生逐层折叠的塑性变形时,结构能量吸收性能较好;随着芯层厚度的增大,二级结构的比吸能和载荷效率增加,芯层厚度较小时二级单层结构的比吸能高于二级双层和三层结构,二级双层结构的比吸能略大于二级三层结构。
-
表 1 挤压爆破回采底柱模拟方案
Table 1. Simulation case of bottom pillar by extrusion blasting
Case No. Minimum
burden/mHole
spacing/mRow
spacing/mCase No. Minimum
burden/mHole
spacing/mRow
spacing/m1 0.7 0.8 1.0 6 0.8 1.0 1.0 2 0.7 0.9 1.0 7 1.0 0.8 1.0 3 0.7 1.0 1.0 8 1.0 0.9 1.0 4 0.8 0.8 1.0 9 1.0 1.0 1.0 5 0.8 0.9 1.0 表 2 岩石RHT模型的主要参数
Table 2. Main parameters of RHT model for rock
Density/
(g·cm−3)Relative shear strength/GPa Relative tensile strength/GPa Elastic shear modulus/GPa Uniaxial compressive strength/MPa D1 D2 2.8 38 10 19.2 88 0.04 1 ρe0/(g·cm−3) Ee0/(J·cm−3) C0 C1 C2 C3 C4 C5 C6 1.255×10–3 0.25 0 0 0 0 0.401 0.401 0 表 4 2号岩石乳化炸药的材料参数及JWL状态方程参数[10]
Table 4. Parameters of No.2 rock emulsion explosive and JWL equation of state[10]
Density/(g·cm−3) D/(km·s−1) pCJ/GPa A/GPa B/MPa R1 R2 ω E0/GPa V 1.2 3.5 3.17 214.4 182 4.2 0.9 0.15 4.192 1.0 表 5 各方案的主要技术指标比较
Table 5. Comparison of the main technical indicators of each scheme
Case Effective stress/MPa Effective plastic strain Displacement/
cmVelocity/
(m·s−1)Effective damage rate/% 1 245.0 0.755 1.222 11.17 27.717 2 241.2 0.810 1.302 12.03 25.790 3 211.1 0.744 1.201 6.14 21.758 4 211.5 0.700 1.239 11.14 25.206 5 227.6 0.740 1.272 7.51 23.909 6 214.8 0.764 1.186 5.37 20.588 7 228.1 0.701 1.233 10.49 22.151 8 227.5 0.831 1.311 6.19 21.561 9 212.6 0.652 1.171 3.34 17.878 -
[1] 刘维信, 王劲翔, 王其杰, 等. 多排孔微差松动挤压爆破陷落柱技术研究 [J]. 煤炭工程, 2020, 52(10): 61–65. doi: 10.11799/ce202010013LIU W X, WANG J X, WANG Q J, et al. Millisecond delay loose and squeeze blasting with multi-row blast hole for subsided column [J]. Coal Engineering, 2020, 52(10): 61–65. doi: 10.11799/ce202010013 [2] 宋立群. 矿房挤压爆破对岩石块度影响的研究与实践 [J]. 世界有色金属, 2017, 37(20): 296, 298.SONG L Q. Research and practice on the influence of extrusion of stope of rock blasting [J]. World Nonferrous Metals, 2017, 37(20): 296, 298. [3] 汪辉, 张延林, 王小和. 微差挤压爆破在堆石坝过渡料开采中的应用 [J]. 爆破, 2011, 28(3): 43–45, 49. doi: 10.3963/j.issn.1001-487X.2011.03.012WANG H, ZHANG Y L, WANG X H. Application of millisecond compression blasting for transition material mining for rock fill dam [J]. Blasting, 2011, 28(3): 43–45, 49. doi: 10.3963/j.issn.1001-487X.2011.03.012 [4] 杜永军, 郑德明, 靖文青. 徐明高速路基开挖大区域微差挤压爆破 [J]. 爆破, 2012, 29(2): 51–53, 130. doi: 10.3963/j.issn.1001-487X.2012.02.013DU Y J, ZHENG D M, JING W Q. Millisecond compression blasting applied in large area excavation of Xuming highway roadbed [J]. Blasting, 2012, 29(2): 51–53, 130. doi: 10.3963/j.issn.1001-487X.2012.02.013 [5] WANG Z L, LI Y C, SHEN R F. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 730–738. doi: 10.1016/j.ijrmms.2006.11.004 [6] 张万志, 徐帮树, 葛颜慧, 等. 硬岩隧道全断面开挖掏槽爆破参数优化 [J]. 爆破, 2022, 39(2): 94–99. doi: 10.3963/j.issn.1001-487X.2022.02.014ZHANG W Z, XU B S, GE Y H, et al. Optimization of cutting blasting parameters for full face excavation of hard rock tunnel [J]. Blasting, 2022, 39(2): 94–99. doi: 10.3963/j.issn.1001-487X.2022.02.014 [7] 李祥龙, 杨长辉, 王建国, 等. 基于模型试验的预裂孔爆破参数优选 [J]. 高压物理学报, 2022, 36(2): 025301. doi: 10.11858/gywlxb.20210830LI X L, YANG C H, WANG J G, et al. Parameter optimization of presplitting blasting based on model test [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025301. doi: 10.11858/gywlxb.20210830 [8] 余永强, 褚怀保, 王卫超, 等. 煤体爆破漏斗的试验研究 [J]. 煤炭科学技术, 2011, 39(5): 41–43. doi: 10.13199/j.cst.2011.05.47.yuyq.003YU Y Q, CHU H B, WANG W C, et al. Experiment study on blasting cone of coal [J]. Coal Science and Technology, 2011, 39(5): 41–43. doi: 10.13199/j.cst.2011.05.47.yuyq.003 [9] 文兴, 赵亮, 朱青凌, 等. 基于爆破漏斗试验的采场凿岩爆破参数优化研究 [J]. 矿业研究与开发, 2021, 41(7): 28–31. doi: 10.13827/j.cnki.kyyk.2021.07.006WEN X, ZHAO L, ZHU Q L, et al. Optimization study on rock drilling blasting parameters based on blasting funnel test [J]. Mining Research and Development, 2021, 41(7): 28–31. doi: 10.13827/j.cnki.kyyk.2021.07.006 [10] ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. doi: 10.1016/j.ijrmms.2006.09.002 [11] 黄尘, 李江腾, 赵远, 等. 基于PFC2D的冬瓜山铜矿爆破参数优化 [J]. 矿冶工程, 2022, 42(1): 1–4. doi: 10.3969/j.issn.0253-6099.2022.01.001HUANG C, LI J T, ZHAO Y, et al. Optimization of blasting parameters for Dongguashan copper mine based on PFC2D [J]. Mining and Metallurgical Engineering, 2022, 42(1): 1–4. doi: 10.3969/j.issn.0253-6099.2022.01.001 [12] 殷锦训, 王维, 游喻豪, 等. 湖北三鑫金铜矿扇形中深孔爆破参数优化数值模拟研究 [J]. 爆破, 2022, 39(2): 85–93. doi: 10.3963/j.issn.1001-487X.2022.02.013YIN J X, WANG W, YOU Y H, et al. Numerical simulation of Sanxin gold and copper mine in Hubei province blasting parameters [J]. Blasting, 2022, 39(2): 85–93. doi: 10.3963/j.issn.1001-487X.2022.02.013 [13] 霍晓锋, 苟永刚, 成涌, 等. 铜绿山矿中深孔掏槽爆破参数优化研究 [J]. 矿冶工程, 2019, 39(5): 17–21. doi: 10.3969/j.issn.0253-6099.2019.05.005HUO X F, GOU Y G, CHENG Y, et al. Parameters optimization for medium-deep hole cutting blasting in Tonglushan mine [J]. Mining and Metallurgical Engineering, 2019, 39(5): 17–21. doi: 10.3969/j.issn.0253-6099.2019.05.005 [14] 张春武. 浅埋隧道爆破施工中邻近框架结构的振动响应分析 [J]. 隧道建设(中英文), 2020, 40(Suppl 2): 93–99. doi: 10.3973/j.issn.2096-4498.2020.S2.012ZHANG C W. Vibration response analysis of adjacent frame structure to shallow buried tunnel blasting construction [J]. Tunnel Construction, 2020, 40(Suppl 2): 93–99. doi: 10.3973/j.issn.2096-4498.2020.S2.012 [15] 王卫华, 刘洋, 张理维, 等. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟 [J]. 黄金科学技术, 2022, 30(3): 414–426. doi: 10.11872/j.issn.1005-2518.2022.03.130WANG W H, LIU Y, ZHANG L W, et al. Numerical simulation of homogeneous rock mass damage caused by two-hole simultaneous blasting based on RHT model [J]. Gold Science and Technology, 2022, 30(3): 414–426. doi: 10.11872/j.issn.1005-2518.2022.03.130 [16] TAO J, YANG X G, LI H T, et al. Numerical investigation of blast-induced rock fragmentation [J]. Computers and Geotechnics, 2020, 128: 103846. doi: 10.1016/j.compgeo.2020.103846 [17] 杨建华, 孙文彬, 姚池, 等. 高地应力岩体多孔爆破破岩机制 [J]. 爆炸与冲击, 2020, 40(7): 075202. doi: 10.11883/bzycj-2019-0427YANG J H, SUN W B, YAO C, et al. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses [J]. Explosion and Shock Waves, 2020, 40(7): 075202. doi: 10.11883/bzycj-2019-0427 [18] 杨霞, 何涛. 基于F-AHP法的高校突发事件应急管理能力评价研究 [J]. 价值工程, 2019, 38(6): 19–21. doi: 10.14018/j.cnki.cn13-1085/n.2019.06.006YANG X, HE T. Study on evaluation of emergency management capability of colleges and universities based on F-AHP method [J]. Value Engineering, 2019, 38(6): 19–21. doi: 10.14018/j.cnki.cn13-1085/n.2019.06.006 [19] 李炎峰, 刘志祥, 闵晨笛. 金属矿深部采场结构参数的模糊层次分析综合评判优化 [J]. 矿冶工程, 2022, 42(1): 24–29. doi: 10.3969/j.issn.0253-6099.2022.01.006LI Y F, LIU Z X, MIN C D. Comprehensive evaluation and optimization with F-AHP for structural parameters of stope at deeps of metal mines [J]. Mining and Metallurgical Engineering, 2022, 42(1): 24–29. doi: 10.3969/j.issn.0253-6099.2022.01.006 -