残矿回采挤压爆破参数优化的数值模拟

周朝兰 刘志祥 杨小聪 刘立顺 张双侠 马泗洲

周朝兰, 刘志祥, 杨小聪, 刘立顺, 张双侠, 马泗洲. 残矿回采挤压爆破参数优化的数值模拟[J]. 高压物理学报, 2023, 37(3): 035301. doi: 10.11858/gywlxb.20220694
引用本文: 周朝兰, 刘志祥, 杨小聪, 刘立顺, 张双侠, 马泗洲. 残矿回采挤压爆破参数优化的数值模拟[J]. 高压物理学报, 2023, 37(3): 035301. doi: 10.11858/gywlxb.20220694
ZHOU Chaolan, LIU Zhixiang, YANG Xiaocong, LIU Lishun, ZHANG Shuangxia, MA Sizhou. Numerical Simulation on Optimization of Extrusion Blasting Parameters for Residual Ore Recovery[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035301. doi: 10.11858/gywlxb.20220694
Citation: ZHOU Chaolan, LIU Zhixiang, YANG Xiaocong, LIU Lishun, ZHANG Shuangxia, MA Sizhou. Numerical Simulation on Optimization of Extrusion Blasting Parameters for Residual Ore Recovery[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035301. doi: 10.11858/gywlxb.20220694

残矿回采挤压爆破参数优化的数值模拟

doi: 10.11858/gywlxb.20220694
基金项目: 国家“十四五”科技攻关项目(2022YFC2904101);国家自然科学基金(51974359)
详细信息
    作者简介:

    周朝兰(1998-),女,硕士研究生,主要从事采矿工程与岩石力学研究.E-mail:1649471674@qq.com

    通讯作者:

    刘志祥(1967-),男,博士,教授,主要从事采矿与岩石力学研究. E-mail:liulzx@csu.edu.cn

  • 中图分类号: O383; TD862

Numerical Simulation on Optimization of Extrusion Blasting Parameters for Residual Ore Recovery

  • 摘要: 为减少回采过程中残留顶底柱资源浪费,以赤峰柴胡栏子金矿为研究对象,基于LS-DYNA有限元软件,建立挤压爆破崩落放矿回采底柱数值模型,根据0.7、0.8、1.0 m 3种最小抵抗线和0.8、0.9、1.0 m 3种孔距设计9种方案,通过分析炮孔爆破过程中爆炸裂纹扩展与压力演化、有效应力和有效塑性应变时程曲线以及矿石的损伤情况,获取各方案的评判指标。采用模糊层次分析法构建目标相对优属度矩阵和模糊判断矩阵,通过综合评判选出最佳的爆破方案。结果表明:最小抵抗线取0.7 m、孔间距取0.9 m为挤压爆破崩落放矿回采底柱的最佳爆破参数。现场试验结果表明,使用优化后的爆破参数获得的爆破效果更好。

     

  • 图  挤压爆破崩落放矿回采底柱

    Figure  1.  Caving and drawing ore of bottom pillar by extrusion blasting

    图  挤压爆破数值模型(方案2)

    Figure  2.  Numerical model of extrusion blasting (Case 2)

    图  爆炸裂纹扩展与压力演化过程

    Figure  3.  Blasting crack propagation and pressure evolution

    图  有效应力时程曲线

    Figure  4.  Variation of effective stress with time

    图  有效塑性应变时程曲线

    Figure  5.  Variation of effective plastic strain with time

    图  各方案的矿石损伤分布

    Figure  6.  Ore damage distribution for varying cases

    图  不同损伤因子下裂纹的分布特征

    Figure  7.  Crack distribution characteristics under different damage factors

    图  各损伤因子下的裂纹面积(方案2)

    Figure  8.  Crack area under each damage factor (Case 2)

    图  各方案的有效损伤率

    Figure  9.  Effective damage rate for each case

    图  10  试验采场

    Figure  10.  Test stope

    图  11  现场爆破效果

    Figure  11.  Renderings of the site blasting test

    表  1  挤压爆破回采底柱模拟方案

    Table  1.   Simulation case of bottom pillar by extrusion blasting

    Case No.Minimum
    burden/m
    Hole
    spacing/m
    Row
    spacing/m
    Case No.Minimum
    burden/m
    Hole
    spacing/m
    Row
    spacing/m
    10.70.81.0 60.81.01.0
    20.70.91.071.00.81.0
    30.71.01.081.00.91.0
    40.80.81.091.01.01.0
    50.80.91.0
    下载: 导出CSV

    表  2  岩石RHT模型的主要参数

    Table  2.   Main parameters of RHT model for rock

    Density/
    (g·cm−3)
    Relative shear strength/GPaRelative tensile strength/GPaElastic shear modulus/GPaUniaxial compressive strength/MPaD1D2
    2.8381019.2880.041
    下载: 导出CSV

    表  3  空气材料参数[5]

    Table  3.   Material parameters of air[5]

    ρe0/(g·cm−3)Ee0/(J·cm−3)C0C1C2C3C4C5C6
    1.255×10–30.2500000.4010.4010
    下载: 导出CSV

    表  4  2号岩石乳化炸药的材料参数及JWL状态方程参数[10]

    Table  4.   Parameters of No.2 rock emulsion explosive and JWL equation of state[10]

    Density/(g·cm−3)D/(km·s−1)pCJ/GPaA/GPaB/MPaR1R2ωE0/GPaV
    1.23.53.17214.41824.20.90.154.1921.0
    下载: 导出CSV

    表  5  各方案的主要技术指标比较

    Table  5.   Comparison of the main technical indicators of each scheme

    CaseEffective stress/MPaEffective plastic strainDisplacement/
    cm
    Velocity/
    (m·s−1)
    Effective damage rate/%
    1245.00.7551.22211.1727.717
    2241.20.8101.30212.0325.790
    3211.10.7441.2016.1421.758
    4211.50.7001.23911.1425.206
    5227.60.7401.2727.5123.909
    6214.80.7641.1865.3720.588
    7228.10.7011.23310.4922.151
    8227.50.8311.3116.1921.561
    9212.60.6521.1713.3417.878
    下载: 导出CSV
  • [1] 刘维信, 王劲翔, 王其杰, 等. 多排孔微差松动挤压爆破陷落柱技术研究 [J]. 煤炭工程, 2020, 52(10): 61–65. doi: 10.11799/ce202010013

    LIU W X, WANG J X, WANG Q J, et al. Millisecond delay loose and squeeze blasting with multi-row blast hole for subsided column [J]. Coal Engineering, 2020, 52(10): 61–65. doi: 10.11799/ce202010013
    [2] 宋立群. 矿房挤压爆破对岩石块度影响的研究与实践 [J]. 世界有色金属, 2017, 37(20): 296, 298.

    SONG L Q. Research and practice on the influence of extrusion of stope of rock blasting [J]. World Nonferrous Metals, 2017, 37(20): 296, 298.
    [3] 汪辉, 张延林, 王小和. 微差挤压爆破在堆石坝过渡料开采中的应用 [J]. 爆破, 2011, 28(3): 43–45, 49. doi: 10.3963/j.issn.1001-487X.2011.03.012

    WANG H, ZHANG Y L, WANG X H. Application of millisecond compression blasting for transition material mining for rock fill dam [J]. Blasting, 2011, 28(3): 43–45, 49. doi: 10.3963/j.issn.1001-487X.2011.03.012
    [4] 杜永军, 郑德明, 靖文青. 徐明高速路基开挖大区域微差挤压爆破 [J]. 爆破, 2012, 29(2): 51–53, 130. doi: 10.3963/j.issn.1001-487X.2012.02.013

    DU Y J, ZHENG D M, JING W Q. Millisecond compression blasting applied in large area excavation of Xuming highway roadbed [J]. Blasting, 2012, 29(2): 51–53, 130. doi: 10.3963/j.issn.1001-487X.2012.02.013
    [5] WANG Z L, LI Y C, SHEN R F. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 730–738. doi: 10.1016/j.ijrmms.2006.11.004
    [6] 张万志, 徐帮树, 葛颜慧, 等. 硬岩隧道全断面开挖掏槽爆破参数优化 [J]. 爆破, 2022, 39(2): 94–99. doi: 10.3963/j.issn.1001-487X.2022.02.014

    ZHANG W Z, XU B S, GE Y H, et al. Optimization of cutting blasting parameters for full face excavation of hard rock tunnel [J]. Blasting, 2022, 39(2): 94–99. doi: 10.3963/j.issn.1001-487X.2022.02.014
    [7] 李祥龙, 杨长辉, 王建国, 等. 基于模型试验的预裂孔爆破参数优选 [J]. 高压物理学报, 2022, 36(2): 025301. doi: 10.11858/gywlxb.20210830

    LI X L, YANG C H, WANG J G, et al. Parameter optimization of presplitting blasting based on model test [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025301. doi: 10.11858/gywlxb.20210830
    [8] 余永强, 褚怀保, 王卫超, 等. 煤体爆破漏斗的试验研究 [J]. 煤炭科学技术, 2011, 39(5): 41–43. doi: 10.13199/j.cst.2011.05.47.yuyq.003

    YU Y Q, CHU H B, WANG W C, et al. Experiment study on blasting cone of coal [J]. Coal Science and Technology, 2011, 39(5): 41–43. doi: 10.13199/j.cst.2011.05.47.yuyq.003
    [9] 文兴, 赵亮, 朱青凌, 等. 基于爆破漏斗试验的采场凿岩爆破参数优化研究 [J]. 矿业研究与开发, 2021, 41(7): 28–31. doi: 10.13827/j.cnki.kyyk.2021.07.006

    WEN X, ZHAO L, ZHU Q L, et al. Optimization study on rock drilling blasting parameters based on blasting funnel test [J]. Mining Research and Development, 2021, 41(7): 28–31. doi: 10.13827/j.cnki.kyyk.2021.07.006
    [10] ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. doi: 10.1016/j.ijrmms.2006.09.002
    [11] 黄尘, 李江腾, 赵远, 等. 基于PFC2D的冬瓜山铜矿爆破参数优化 [J]. 矿冶工程, 2022, 42(1): 1–4. doi: 10.3969/j.issn.0253-6099.2022.01.001

    HUANG C, LI J T, ZHAO Y, et al. Optimization of blasting parameters for Dongguashan copper mine based on PFC2D [J]. Mining and Metallurgical Engineering, 2022, 42(1): 1–4. doi: 10.3969/j.issn.0253-6099.2022.01.001
    [12] 殷锦训, 王维, 游喻豪, 等. 湖北三鑫金铜矿扇形中深孔爆破参数优化数值模拟研究 [J]. 爆破, 2022, 39(2): 85–93. doi: 10.3963/j.issn.1001-487X.2022.02.013

    YIN J X, WANG W, YOU Y H, et al. Numerical simulation of Sanxin gold and copper mine in Hubei province blasting parameters [J]. Blasting, 2022, 39(2): 85–93. doi: 10.3963/j.issn.1001-487X.2022.02.013
    [13] 霍晓锋, 苟永刚, 成涌, 等. 铜绿山矿中深孔掏槽爆破参数优化研究 [J]. 矿冶工程, 2019, 39(5): 17–21. doi: 10.3969/j.issn.0253-6099.2019.05.005

    HUO X F, GOU Y G, CHENG Y, et al. Parameters optimization for medium-deep hole cutting blasting in Tonglushan mine [J]. Mining and Metallurgical Engineering, 2019, 39(5): 17–21. doi: 10.3969/j.issn.0253-6099.2019.05.005
    [14] 张春武. 浅埋隧道爆破施工中邻近框架结构的振动响应分析 [J]. 隧道建设(中英文), 2020, 40(Suppl 2): 93–99. doi: 10.3973/j.issn.2096-4498.2020.S2.012

    ZHANG C W. Vibration response analysis of adjacent frame structure to shallow buried tunnel blasting construction [J]. Tunnel Construction, 2020, 40(Suppl 2): 93–99. doi: 10.3973/j.issn.2096-4498.2020.S2.012
    [15] 王卫华, 刘洋, 张理维, 等. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟 [J]. 黄金科学技术, 2022, 30(3): 414–426. doi: 10.11872/j.issn.1005-2518.2022.03.130

    WANG W H, LIU Y, ZHANG L W, et al. Numerical simulation of homogeneous rock mass damage caused by two-hole simultaneous blasting based on RHT model [J]. Gold Science and Technology, 2022, 30(3): 414–426. doi: 10.11872/j.issn.1005-2518.2022.03.130
    [16] TAO J, YANG X G, LI H T, et al. Numerical investigation of blast-induced rock fragmentation [J]. Computers and Geotechnics, 2020, 128: 103846. doi: 10.1016/j.compgeo.2020.103846
    [17] 杨建华, 孙文彬, 姚池, 等. 高地应力岩体多孔爆破破岩机制 [J]. 爆炸与冲击, 2020, 40(7): 075202. doi: 10.11883/bzycj-2019-0427

    YANG J H, SUN W B, YAO C, et al. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses [J]. Explosion and Shock Waves, 2020, 40(7): 075202. doi: 10.11883/bzycj-2019-0427
    [18] 杨霞, 何涛. 基于F-AHP法的高校突发事件应急管理能力评价研究 [J]. 价值工程, 2019, 38(6): 19–21. doi: 10.14018/j.cnki.cn13-1085/n.2019.06.006

    YANG X, HE T. Study on evaluation of emergency management capability of colleges and universities based on F-AHP method [J]. Value Engineering, 2019, 38(6): 19–21. doi: 10.14018/j.cnki.cn13-1085/n.2019.06.006
    [19] 李炎峰, 刘志祥, 闵晨笛. 金属矿深部采场结构参数的模糊层次分析综合评判优化 [J]. 矿冶工程, 2022, 42(1): 24–29. doi: 10.3969/j.issn.0253-6099.2022.01.006

    LI Y F, LIU Z X, MIN C D. Comprehensive evaluation and optimization with F-AHP for structural parameters of stope at deeps of metal mines [J]. Mining and Metallurgical Engineering, 2022, 42(1): 24–29. doi: 10.3969/j.issn.0253-6099.2022.01.006
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  86
  • PDF下载量:  21
出版历程
  • 收稿日期:  2022-11-18
  • 修回日期:  2023-01-07
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回