[1] |
闫文哲, 李强, 曲普, 等. 气体炮内弹道建模与实验研究 [J]. 火炮发射与控制学报, 2021, 42(4): 87–90, 96. doi: 10.19323/j.issn.1673-6524.2021.04.016YAN W Z, LI Q, QU P, et al. Interior ballistic modeling and experimental study of gas gun [J]. Journal of Gun Launch & Control, 2021, 42(4): 87–90, 96. doi: 10.19323/j.issn.1673-6524.2021.04.016
|
[2] |
高跃飞. 火炮反后坐装置设计 [M]. 北京: 国防工业出版社, 2010: 212−213.GAO Y F. Design of the reverse recoil device of the cannon [M]. Beijing: National Defense Industry Press, 2010: 212−213.
|
[3] |
张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析 [J]. 爆炸与冲击, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056ZHANG X, YU Y G, ZHANG X W. Analysis of muzzle flow field characteristics of gun fired in different media [J]. Explosion and Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
|
[4] |
赵排航, 李永建, 董金龙, 等. 某型狙击榴弹发射器的膛口制退器优化设计 [J]. 火炮发射与控制学报, 2020, 41(2): 59–63. doi: 10.19323/j.issn.1673-6524.2020.02.012ZHAO P H, LI Y J, DONG J L, et al. The optimized design of muzzle brake for a sniper grenade launcher [J]. Journal of Gun Launch & Control, 2020, 41(2): 59–63. doi: 10.19323/j.issn.1673-6524.2020.02.012
|
[5] |
赵佳俊, 郭张霞, 赵秀和, 等. 基于CFD的炮口制退器侧孔射流研究 [J]. 火炮发射与控制学报, 2021, 42(4): 13–17,22. doi: 10.19323/j.issn.1673-6524.2021.04.003ZHAO J J, GUO Z X, ZHAO X H, et al. Research of the airflow from muzzle brake side holes based on CFD [J]. Journal of Gun Launch & Control, 2021, 42(4): 13–17,22. doi: 10.19323/j.issn.1673-6524.2021.04.003
|
[6] |
徐达, 罗业, 张杰, 等. 侧孔参数对炮口制退器流场结构及超压的影响研究 [J]. 火炮发射与控制学报, 2020, 41(4): 32–37, 69. doi: 10.19323/j.issn.1673-6524.2020.04.007XU D, LUO Y, ZHANG J, et al. Effects of side hole parameters on structure and overpressure of muzzle brake flow field [J]. Journal of Gun Launch & Control, 2020, 41(4): 32–37, 69. doi: 10.19323/j.issn.1673-6524.2020.04.007
|
[7] |
咸东鹏, 廖振强, 肖俊波, 等. 喷管高效膛口制退器对机枪射击性能的影响 [J]. 振动、测试与诊断, 2019, 39(3): 560–564. doi: 10.16450/j.cnki.issn.1004-6801.2019.03.015XIAN D P, LIAO Z Q, XIAO J B, et al. Influence of nozzle high efficiency muzzle brake on firing performance of gun [J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(3): 560–564. doi: 10.16450/j.cnki.issn.1004-6801.2019.03.015
|
[8] |
LEI H X, WANG Z J, ZHAO J L. Stress analysis of muzzle brake by using fluid-solid coupled method [J]. Journal of Engineering Science and Technology Review, 2016, 9(4): 48–55. doi: 10.25103/jestr.094.07
|
[9] |
张焕好, 陈志华, 姜孝海, 等. 高速弹丸穿越不同制退器时的膛口流场波系结构研究 [J]. 兵工学报, 2012, 33(5): 623–629.ZHANG H H, CHEN Z H, JIANG X H, et al. Investigation on the blast wave structures of a high-speed projectile flying through different muzzle brakes [J]. Acta Armamentarii, 2012, 33(5): 623–629.
|
[10] |
王杨, 姜孝海, 杨绪普, 等. 小口径膛口射流噪声的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 508–512. doi: 10.11883/1001-1455(2014)04-0508-05WANG Y, JIANG X H, YANG X P, et al. Numerical simulation on jet noise induced by complex flows discharging from small caliber muzzle [J]. Explosion and Shock Waves, 2014, 34(4): 508–512. doi: 10.11883/1001-1455(2014)04-0508-05
|
[11] |
赵欣怡, 周克栋, 赫雷, 等. 带制退器的膛口射流噪声数值模拟与实验研究 [J]. 爆炸与冲击, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279ZHAO X Y, ZHOU K D, HE L, et al. Numerical simulation and experimental study on jet noise from a small caliber rifle with a muzzle brake [J]. Explosion and Shock Waves, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279
|
[12] |
余海伟, 袁军堂, 汪振华, 等. 新型结构炮口制退器的膛口冲击波数值研究与性能分析 [J]. 高压物理学报, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568YU H W, YUAN J T, WANG Z H, et al. Muzzle blast wave investigation and performance analysis of new-structure muzzle brake based on numerical simulation [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568
|
[13] |
CHATURVEDI E, DWIVEDI R K. Computer aided design and analysis of a tunable muzzle brake [J]. Defence Technology, 2019, 15(1): 89–94. doi: 10.1016/j.dt.2018.06.011
|