一级气体炮制退器的流场分析及其效率测试

廖国柔 马国鹭 张浩 陈万华 宗建宇 李中杨

廖国柔, 马国鹭, 张浩, 陈万华, 宗建宇, 李中杨. 一级气体炮制退器的流场分析及其效率测试[J]. 高压物理学报, 2023, 37(2): 023301. doi: 10.11858/gywlxb.20220692
引用本文: 廖国柔, 马国鹭, 张浩, 陈万华, 宗建宇, 李中杨. 一级气体炮制退器的流场分析及其效率测试[J]. 高压物理学报, 2023, 37(2): 023301. doi: 10.11858/gywlxb.20220692
LIAO Guorou, MA Guolu, ZHANG Hao, CHEN Wanhua, ZONG Jianyu, LI Zhongyang. Flow Field Analysis and Efficiency Test of Muzzle Brake Used in First-Stage Gas Gun[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 023301. doi: 10.11858/gywlxb.20220692
Citation: LIAO Guorou, MA Guolu, ZHANG Hao, CHEN Wanhua, ZONG Jianyu, LI Zhongyang. Flow Field Analysis and Efficiency Test of Muzzle Brake Used in First-Stage Gas Gun[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 023301. doi: 10.11858/gywlxb.20220692

一级气体炮制退器的流场分析及其效率测试

doi: 10.11858/gywlxb.20220692
基金项目: 国家自然科学基金(61505169);西南科技大学研究生创新基金(18ycx109)
详细信息
    作者简介:

    廖国柔(1995-),女,硕士研究生,主要从事炮弹发射理论与技术研究. E-mail:liaoguorou666@163.com

    通讯作者:

    马国鹭(1981-),男,博士,教授,主要从事炮弹发射理论与技术研究. E-mail:maguolu999@163.com

  • 中图分类号: O521.3; O347.5; TJ01

Flow Field Analysis and Efficiency Test of Muzzle Brake Used in First-Stage Gas Gun

  • 摘要: 针对口径为50 mm的一级气体炮制退器,基于三维非定常Navier-Stokes方程,结合多区域动网格技术,对侧孔倾角为120°、孔径为16 mm的制退器流场形态进行了数值模拟,分析了发射压力对冲击波形成、发展和衰减的变化规律以及制退效率的影响。搭建了一级气体炮发射平台,并进行了制退效率测试。实验结果表明:模拟计算得到的一级气体炮制退器的制退效率与实验结果的最大相对偏差小于1.25%,制退器的流场动态发展与实验结果高度一致;制退效率随发射压力的升高呈线性增大,对于侧孔倾角为120°、孔径为16 mm的制退器,当发射压力由5 MPa提升至10 MPa时,制退效率由4.87%提高至12.71%。

     

  • 图  炮口制退器结构设计与网格划分

    Figure  1.  Structure design and mesh division of muzzle brake

    图  不同发射压力下制退器流场分布随时间演化云图

    Figure  2.  Cloud diagram of flow field distributions versus time of brake under different launch pressures

    图  不同发射压力下制退器总后坐力变化曲线

    Figure  3.  Total recoil force versus time of brake under different launch pressures

    图  一级气体炮发射系统实验平台

    Figure  4.  Experimental platform of the first-stage gas gun launching system

    图  不同发射压力下气体炮实验测得的后坐力

    Figure  5.  Recoil forces measured by gas gun experiment under different launching pressures

    图  数值模拟与实验测得的制退效率

    Figure  6.  Brake efficiencies obtained by simulation calculation and experiment

    图  不同发射压力下的流场分布

    Figure  7.  Air flow field distributions under different launch pressures

  • [1] 闫文哲, 李强, 曲普, 等. 气体炮内弹道建模与实验研究 [J]. 火炮发射与控制学报, 2021, 42(4): 87–90, 96. doi: 10.19323/j.issn.1673-6524.2021.04.016

    YAN W Z, LI Q, QU P, et al. Interior ballistic modeling and experimental study of gas gun [J]. Journal of Gun Launch & Control, 2021, 42(4): 87–90, 96. doi: 10.19323/j.issn.1673-6524.2021.04.016
    [2] 高跃飞. 火炮反后坐装置设计 [M]. 北京: 国防工业出版社, 2010: 212−213.

    GAO Y F. Design of the reverse recoil device of the cannon [M]. Beijing: National Defense Industry Press, 2010: 212−213.
    [3] 张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析 [J]. 爆炸与冲击, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056

    ZHANG X, YU Y G, ZHANG X W. Analysis of muzzle flow field characteristics of gun fired in different media [J]. Explosion and Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
    [4] 赵排航, 李永建, 董金龙, 等. 某型狙击榴弹发射器的膛口制退器优化设计 [J]. 火炮发射与控制学报, 2020, 41(2): 59–63. doi: 10.19323/j.issn.1673-6524.2020.02.012

    ZHAO P H, LI Y J, DONG J L, et al. The optimized design of muzzle brake for a sniper grenade launcher [J]. Journal of Gun Launch & Control, 2020, 41(2): 59–63. doi: 10.19323/j.issn.1673-6524.2020.02.012
    [5] 赵佳俊, 郭张霞, 赵秀和, 等. 基于CFD的炮口制退器侧孔射流研究 [J]. 火炮发射与控制学报, 2021, 42(4): 13–17,22. doi: 10.19323/j.issn.1673-6524.2021.04.003

    ZHAO J J, GUO Z X, ZHAO X H, et al. Research of the airflow from muzzle brake side holes based on CFD [J]. Journal of Gun Launch & Control, 2021, 42(4): 13–17,22. doi: 10.19323/j.issn.1673-6524.2021.04.003
    [6] 徐达, 罗业, 张杰, 等. 侧孔参数对炮口制退器流场结构及超压的影响研究 [J]. 火炮发射与控制学报, 2020, 41(4): 32–37, 69. doi: 10.19323/j.issn.1673-6524.2020.04.007

    XU D, LUO Y, ZHANG J, et al. Effects of side hole parameters on structure and overpressure of muzzle brake flow field [J]. Journal of Gun Launch & Control, 2020, 41(4): 32–37, 69. doi: 10.19323/j.issn.1673-6524.2020.04.007
    [7] 咸东鹏, 廖振强, 肖俊波, 等. 喷管高效膛口制退器对机枪射击性能的影响 [J]. 振动、测试与诊断, 2019, 39(3): 560–564. doi: 10.16450/j.cnki.issn.1004-6801.2019.03.015

    XIAN D P, LIAO Z Q, XIAO J B, et al. Influence of nozzle high efficiency muzzle brake on firing performance of gun [J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(3): 560–564. doi: 10.16450/j.cnki.issn.1004-6801.2019.03.015
    [8] LEI H X, WANG Z J, ZHAO J L. Stress analysis of muzzle brake by using fluid-solid coupled method [J]. Journal of Engineering Science and Technology Review, 2016, 9(4): 48–55. doi: 10.25103/jestr.094.07
    [9] 张焕好, 陈志华, 姜孝海, 等. 高速弹丸穿越不同制退器时的膛口流场波系结构研究 [J]. 兵工学报, 2012, 33(5): 623–629.

    ZHANG H H, CHEN Z H, JIANG X H, et al. Investigation on the blast wave structures of a high-speed projectile flying through different muzzle brakes [J]. Acta Armamentarii, 2012, 33(5): 623–629.
    [10] 王杨, 姜孝海, 杨绪普, 等. 小口径膛口射流噪声的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 508–512. doi: 10.11883/1001-1455(2014)04-0508-05

    WANG Y, JIANG X H, YANG X P, et al. Numerical simulation on jet noise induced by complex flows discharging from small caliber muzzle [J]. Explosion and Shock Waves, 2014, 34(4): 508–512. doi: 10.11883/1001-1455(2014)04-0508-05
    [11] 赵欣怡, 周克栋, 赫雷, 等. 带制退器的膛口射流噪声数值模拟与实验研究 [J]. 爆炸与冲击, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279

    ZHAO X Y, ZHOU K D, HE L, et al. Numerical simulation and experimental study on jet noise from a small caliber rifle with a muzzle brake [J]. Explosion and Shock Waves, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279
    [12] 余海伟, 袁军堂, 汪振华, 等. 新型结构炮口制退器的膛口冲击波数值研究与性能分析 [J]. 高压物理学报, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568

    YU H W, YUAN J T, WANG Z H, et al. Muzzle blast wave investigation and performance analysis of new-structure muzzle brake based on numerical simulation [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568
    [13] CHATURVEDI E, DWIVEDI R K. Computer aided design and analysis of a tunable muzzle brake [J]. Defence Technology, 2019, 15(1): 89–94. doi: 10.1016/j.dt.2018.06.011
  • 加载中
图(8)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  74
  • PDF下载量:  60
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2022-12-05
  • 网络出版日期:  2023-03-25
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回